These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 32649223)
1. Accumulation of six PFAS compounds by woody and herbaceous plants: potential for phytoextraction. Huff DK; Morris LA; Sutter L; Costanza J; Pennell KD Int J Phytoremediation; 2020; 22(14):1538-1550. PubMed ID: 32649223 [TBL] [Abstract][Full Text] [Related]
2. Phytoextraction of per- and polyfluoroalkyl substances (PFAS) and the influence of supplements on the performance of short-rotation crops. Nassazzi W; Wu TC; Jass J; Lai FY; Ahrens L Environ Pollut; 2023 Sep; 333():122038. PubMed ID: 37321315 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation Potential of Azolla filiculoides: Uptake and Toxicity of Seven Per- and Polyfluoroalkyl Substances (PFAS) at Environmentally Relevant Water Concentrations. Lintern G; Scarlett AG; Gagnon MM; Leeder J; Amhet A; Lettoof DC; Leshyk VO; Bujak A; Bujak J; Grice K Environ Toxicol Chem; 2024 Oct; 43(10):2157-2168. PubMed ID: 39110072 [TBL] [Abstract][Full Text] [Related]
4. Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: From soil adsorption and plant uptake to effects on microbial community. Zhang DQ; Wang M; He Q; Niu X; Liang Y Environ Pollut; 2020 Feb; 257():113575. PubMed ID: 31733970 [TBL] [Abstract][Full Text] [Related]
5. Juncus sarophorus, a native Australian species, tolerates and accumulates PFOS, PFOA and PFHxS in a glasshouse experiment. Zhu J; Wallis I; Guan H; Ross K; Whiley H; Fallowfield H Sci Total Environ; 2022 Jun; 826():154184. PubMed ID: 35231527 [TBL] [Abstract][Full Text] [Related]
6. Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Menger F; Pohl J; Ahrens L; Carlsson G; Örn S Chemosphere; 2020 Apr; 245():125573. PubMed ID: 31877453 [TBL] [Abstract][Full Text] [Related]
7. Phytoextraction of per- and polyfluoroalkyl substances (PFAS) by weeds: Effect of PFAS physicochemical properties and plant physiological traits. He Q; Yan Z; Qian S; Xiong T; Grieger KD; Wang X; Liu C; Zhi Y J Hazard Mater; 2023 Jul; 454():131492. PubMed ID: 37121031 [TBL] [Abstract][Full Text] [Related]
8. Electrodialytic per- and polyfluoroalkyl substances (PFASs) removal mechanism for contaminated soil. Sörengård M; Niarchos G; Jensen PE; Ahrens L Chemosphere; 2019 Oct; 232():224-231. PubMed ID: 31154183 [TBL] [Abstract][Full Text] [Related]
9. Investigation of levels of perfluoroalkyl substances in surface water, sediment and fish tissue in New Jersey, USA. Goodrow SM; Ruppel B; Lippincott RL; Post GB; Procopio NA Sci Total Environ; 2020 Aug; 729():138839. PubMed ID: 32387771 [TBL] [Abstract][Full Text] [Related]
10. Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Scher DP; Kelly JE; Huset CA; Barry KM; Hoffbeck RW; Yingling VL; Messing RB Chemosphere; 2018 Apr; 196():548-555. PubMed ID: 29329087 [TBL] [Abstract][Full Text] [Related]
11. Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Hepburn E; Madden C; Szabo D; Coggan TL; Clarke B; Currell M Environ Pollut; 2019 May; 248():101-113. PubMed ID: 30784829 [TBL] [Abstract][Full Text] [Related]
12. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Sharma BM; Bharat GK; Tayal S; Larssen T; Bečanová J; Karásková P; Whitehead PG; Futter MN; Butterfield D; Nizzetto L Environ Pollut; 2016 Jan; 208(Pt B):704-13. PubMed ID: 26561452 [TBL] [Abstract][Full Text] [Related]
13. The Phytomanagement of PFAS-Contaminated Land. Evangelou MWH; Robinson BH Int J Environ Res Public Health; 2022 Jun; 19(11):. PubMed ID: 35682401 [TBL] [Abstract][Full Text] [Related]
14. Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. Mayakaduwage S; Ekanayake A; Kurwadkar S; Rajapaksha AU; Vithanage M Environ Res; 2022 Sep; 212(Pt B):113311. PubMed ID: 35460639 [TBL] [Abstract][Full Text] [Related]
15. Critical review on phytoremediation of polyfluoroalkyl substances from environmental matrices: Need for global concern. Kavusi E; Shahi Khalaf Ansar B; Ebrahimi S; Sharma R; Ghoreishi SS; Nobaharan K; Abdoli S; Dehghanian Z; Asgari Lajayer B; Senapathi V; Price GW; Astatkie T Environ Res; 2023 Jan; 217():114844. PubMed ID: 36403653 [TBL] [Abstract][Full Text] [Related]
16. Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community. Zhang D; Zhang W; Liang Y Sci Total Environ; 2019 Dec; 697():134146. PubMed ID: 31484094 [TBL] [Abstract][Full Text] [Related]
17. Application of native plants in constructed floating wetlands as a passive remediation approach for PFAS-impacted surface water. Awad J; Brunetti G; Juhasz A; Williams M; Navarro D; Drigo B; Bougoure J; Vanderzalm J; Beecham S J Hazard Mater; 2022 May; 429():128326. PubMed ID: 35101757 [TBL] [Abstract][Full Text] [Related]
18. Per- and Polyfluorinated Alkyl Substances (PFAS) cycling within Michigan: Contaminated sites, landfills and wastewater treatment plants. Helmer RW; Reeves DM; Cassidy DP Water Res; 2022 Feb; 210():117983. PubMed ID: 34954365 [TBL] [Abstract][Full Text] [Related]
19. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015. Daly ER; Chan BP; Talbot EA; Nassif J; Bean C; Cavallo SJ; Metcalf E; Simone K; Woolf AD Int J Hyg Environ Health; 2018 Apr; 221(3):569-577. PubMed ID: 29514764 [TBL] [Abstract][Full Text] [Related]
20. PFAS assessment in fish - Samples from Illinois waters. Sands M; Zhang X; Jensen T; La Frano M; Lin M; Irudayaraj J Sci Total Environ; 2024 Jun; 927():172357. PubMed ID: 38614344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]