These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 32649290)
1. Design of a wearable four-channel near-infrared spectroscopy system for the measurement of brain hemodynamic responses. Arivudaiyanambi J; Mohan S; Cherian SM; Natesan K Biomed Tech (Berl); 2020 Jul; ():. PubMed ID: 32649290 [TBL] [Abstract][Full Text] [Related]
2. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. Sitaram R; Zhang H; Guan C; Thulasidas M; Hoshi Y; Ishikawa A; Shimizu K; Birbaumer N Neuroimage; 2007 Feb; 34(4):1416-27. PubMed ID: 17196832 [TBL] [Abstract][Full Text] [Related]
3. Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study. Wriessnegger SC; Kurzmann J; Neuper C Int J Psychophysiol; 2008 Jan; 67(1):54-63. PubMed ID: 18006099 [TBL] [Abstract][Full Text] [Related]
4. Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: a near-infrared spectroscopy study. Kober SE; Wood G Neuroimage; 2014 Jun; 93 Pt 1():1-10. PubMed ID: 24576696 [TBL] [Abstract][Full Text] [Related]
5. Multimodal assessment of the spatial correspondence between fNIRS and fMRI hemodynamic responses in motor tasks. Pereira J; Direito B; Lührs M; Castelo-Branco M; Sousa T Sci Rep; 2023 Feb; 13(1):2244. PubMed ID: 36755139 [TBL] [Abstract][Full Text] [Related]
6. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface. Naseer N; Hong KS Neurosci Lett; 2013 Oct; 553():84-9. PubMed ID: 23973334 [TBL] [Abstract][Full Text] [Related]
7. Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS). Jalalvandi M; Riyahi Alam N; Sharini H; Hashemi H; Nadimi M J Biomed Phys Eng; 2021 Oct; 11(5):583-594. PubMed ID: 34722403 [TBL] [Abstract][Full Text] [Related]
8. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy. Iso N; Moriuchi T; Sagari A; Kitajima E; Iso F; Tanaka K; Kikuchi Y; Tabira T; Higashi T Front Physiol; 2015; 6():416. PubMed ID: 26793118 [TBL] [Abstract][Full Text] [Related]
9. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867 [TBL] [Abstract][Full Text] [Related]
10. Development of a miniaturized and modular probe for fNIRS instrument. Liu G; Cui W; Hu X; Xiao R; Zhang S; Cai J; Qiu J; Qi Y Lasers Med Sci; 2022 Jun; 37(4):2269-2277. PubMed ID: 35028765 [TBL] [Abstract][Full Text] [Related]
11. Suppressing Systemic Interference in fNIRS Monitoring of the Hemodynamic Cortical Response to Motor Execution and Imagery. Wu S; Li J; Gao L; Chen C; He S Front Hum Neurosci; 2018; 12():85. PubMed ID: 29556184 [TBL] [Abstract][Full Text] [Related]
12. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface. Zhang S; Zheng Y; Wang D; Wang L; Ma J; Zhang J; Xu W; Li D; Zhang D Neurosci Lett; 2017 Aug; 655():35-40. PubMed ID: 28663052 [TBL] [Abstract][Full Text] [Related]
13. The Temporal Muscle of the Head Can Cause Artifacts in Optical Imaging Studies with Functional Near-Infrared Spectroscopy. Schecklmann M; Mann A; Langguth B; Ehlis AC; Fallgatter AJ; Haeussinger FB Front Hum Neurosci; 2017; 11():456. PubMed ID: 28966580 [No Abstract] [Full Text] [Related]
14. Age-related differences in the within-session trainability of hemodynamic parameters: a near-infrared spectroscopy-based neurofeedback study. Kober SE; Spörk R; Bauernfeind G; Wood G Neurobiol Aging; 2019 Sep; 81():127-137. PubMed ID: 31280116 [TBL] [Abstract][Full Text] [Related]
15. [Design and experiment of a multi-modal electroencephalogram-near infrared spectroscopy helmet for simultaneously acquiring at the same brain area]. Xiong X; Fu Y; Zhang X; Li S; Xu B; Yin X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Apr; 35(2):290-296. PubMed ID: 29745536 [TBL] [Abstract][Full Text] [Related]
16. Similar Hemodynamic Signal Patterns Between Compact NIRS and 52-Channel NIRS During a Verbal Fluency Task. Hirano J; Takamiya A; Yamamoto Y; Minami F; Mimura M; Yamagata B Front Psychiatry; 2021; 12():772339. PubMed ID: 34975575 [TBL] [Abstract][Full Text] [Related]
17. Wearable and wireless time-domain near-infrared spectroscopy system for brain and muscle hemodynamic monitoring. Lacerenza M; Buttafava M; Renna M; Mora AD; Spinelli L; Zappa F; Pifferi A; Torricelli A; Tosi A; Contini D Biomed Opt Express; 2020 Oct; 11(10):5934-5949. PubMed ID: 33149997 [TBL] [Abstract][Full Text] [Related]
18. Hemodynamic signal changes during saliva and water swallowing: a near-infrared spectroscopy study. Kober SE; Wood G J Biomed Opt; 2018 Jan; 23(1):1-7. PubMed ID: 29388413 [TBL] [Abstract][Full Text] [Related]
19. Hemodynamic Signal Changes Accompanying Execution and Imagery of Swallowing in Patients with Dysphagia: A Multiple Single-Case Near-Infrared Spectroscopy Study. Kober SE; Bauernfeind G; Woller C; Sampl M; Grieshofer P; Neuper C; Wood G Front Neurol; 2015; 6():151. PubMed ID: 26217298 [TBL] [Abstract][Full Text] [Related]
20. The Utility of Functional Near-infrared Spectroscopy for Measuring Cortical Activity during Cycling Exercise. Tempest GD; Reiss AL Med Sci Sports Exerc; 2019 May; 51(5):979-987. PubMed ID: 30985584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]