These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 32649667)
1. Perennial vegetables: A neglected resource for biodiversity, carbon sequestration, and nutrition. Toensmeier E; Ferguson R; Mehra M PLoS One; 2020; 15(7):e0234611. PubMed ID: 32649667 [TBL] [Abstract][Full Text] [Related]
2. Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. Leisner CP Plant Sci; 2020 Apr; 293():110412. PubMed ID: 32081261 [TBL] [Abstract][Full Text] [Related]
3. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Zomer RJ; Bossio DA; Sommer R; Verchot LV Sci Rep; 2017 Nov; 7(1):15554. PubMed ID: 29138460 [TBL] [Abstract][Full Text] [Related]
4. Environmental changes impact on vegetables physiology and nutrition - Gaps between vegetable and cereal crops. Zhou R; Jiang F; Liu Y; Yu X; Song X; Wu Z; Cammarano D Sci Total Environ; 2024 Jul; 933():173180. PubMed ID: 38740212 [TBL] [Abstract][Full Text] [Related]
5. Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil. Kirkby CA; Richardson AE; Wade LJ; Conyers M; Kirkegaard JA PLoS One; 2016; 11(5):e0153698. PubMed ID: 27144282 [TBL] [Abstract][Full Text] [Related]
6. Global variation in soil carbon sequestration potential through improved cropland management. Lessmann M; Ros GH; Young MD; de Vries W Glob Chang Biol; 2022 Feb; 28(3):1162-1177. PubMed ID: 34726814 [TBL] [Abstract][Full Text] [Related]
7. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. Chivenge P; Mabhaudhi T; Modi AT; Mafongoya P Int J Environ Res Public Health; 2015 May; 12(6):5685-711. PubMed ID: 26016431 [TBL] [Abstract][Full Text] [Related]
8. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. Beach RH; Sulser TB; Crimmins A; Cenacchi N; Cole J; Fukagawa NK; Mason-D'Croz D; Myers S; Sarofim MC; Smith M; Ziska LH Lancet Planet Health; 2019 Jul; 3(7):e307-e317. PubMed ID: 31326071 [TBL] [Abstract][Full Text] [Related]
9. Missing association between nutrient concentrations in leaves and edible parts of food crops - A neglected food security issue. Fischer S; Hilger T; Piepho HP; Jordan I; Cadisch G Food Chem; 2021 May; 345():128723. PubMed ID: 33333357 [TBL] [Abstract][Full Text] [Related]
10. Anticipated burden and mitigation of carbon-dioxide-induced nutritional deficiencies and related diseases: A simulation modeling study. Weyant C; Brandeau ML; Burke M; Lobell DB; Bendavid E; Basu S PLoS Med; 2018 Jul; 15(7):e1002586. PubMed ID: 29969442 [TBL] [Abstract][Full Text] [Related]
11. Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets. Schneider JM; Zabel F; Schünemann F; Delzeit R; Mauser W PLoS One; 2022; 17(2):e0263063. PubMed ID: 35192630 [TBL] [Abstract][Full Text] [Related]
12. Carbon sequestration in European croplands. Smith P; Falloon P SEB Exp Biol Ser; 2005; ():47-55. PubMed ID: 17633030 [TBL] [Abstract][Full Text] [Related]
13. Interactive impacts of climate change and agricultural management on soil organic carbon sequestration potential of cropland in China over the coming decades. Wang Y; Tao F; Chen Y; Yin L Sci Total Environ; 2022 Apr; 817():153018. PubMed ID: 35026270 [TBL] [Abstract][Full Text] [Related]
14. Detailed global modelling of soil organic carbon in cropland, grassland and forest soils. Morais TG; Teixeira RFM; Domingos T PLoS One; 2019; 14(9):e0222604. PubMed ID: 31536571 [TBL] [Abstract][Full Text] [Related]
15. The role of underutilized fruits in nutritional and economic security of tribals: a review. Nandal U; Bhardwaj RL Crit Rev Food Sci Nutr; 2014; 54(7):880-90. PubMed ID: 24499067 [TBL] [Abstract][Full Text] [Related]
16. Edible fungi crops through mycoforestry, potential for carbon negative food production and mitigation of food and forestry conflicts. Thomas PW; Jump AS Proc Natl Acad Sci U S A; 2023 Mar; 120(12):e2220079120. PubMed ID: 36913576 [TBL] [Abstract][Full Text] [Related]
17. Changes in Climate Vulnerability and Projected Water Stress of The Gambia's Food Supply Between 1988 and 2018: Trading With Trade-Offs. Hadida G; Ali Z; Kastner T; Carr TW; Prentice AM; Green R; Scheelbeek P Front Public Health; 2022; 10():786071. PubMed ID: 35747777 [TBL] [Abstract][Full Text] [Related]
18. Time in pasture rotation alters soil microbial community composition and function and increases carbon sequestration potential in a temperate agroecosystem. Lin D; McCulley RL; Nelson JA; Jacobsen KL; Zhang D Sci Total Environ; 2020 Jan; 698():134233. PubMed ID: 31514023 [TBL] [Abstract][Full Text] [Related]
19. Changes in soil organic carbon under perennial crops. Ledo A; Smith P; Zerihun A; Whitaker J; Vicente-Vicente JL; Qin Z; McNamara NP; Zinn YL; Llorente M; Liebig M; Kuhnert M; Dondini M; Don A; Diaz-Pines E; Datta A; Bakka H; Aguilera E; Hillier J Glob Chang Biol; 2020 Jul; 26(7):4158-4168. PubMed ID: 32412147 [TBL] [Abstract][Full Text] [Related]
20. Managing India's small landholder farms for food security and achieving the "4 per Thousand" target. Nath AJ; Lal R; Sileshi GW; Das AK Sci Total Environ; 2018 Sep; 634():1024-1033. PubMed ID: 29660860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]