BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32649667)

  • 1. Perennial vegetables: A neglected resource for biodiversity, carbon sequestration, and nutrition.
    Toensmeier E; Ferguson R; Mehra M
    PLoS One; 2020; 15(7):e0234611. PubMed ID: 32649667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value.
    Leisner CP
    Plant Sci; 2020 Apr; 293():110412. PubMed ID: 32081261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils.
    Zomer RJ; Bossio DA; Sommer R; Verchot LV
    Sci Rep; 2017 Nov; 7(1):15554. PubMed ID: 29138460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental changes impact on vegetables physiology and nutrition - Gaps between vegetable and cereal crops.
    Zhou R; Jiang F; Liu Y; Yu X; Song X; Wu Z; Cammarano D
    Sci Total Environ; 2024 Jul; 933():173180. PubMed ID: 38740212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil.
    Kirkby CA; Richardson AE; Wade LJ; Conyers M; Kirkegaard JA
    PLoS One; 2016; 11(5):e0153698. PubMed ID: 27144282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global variation in soil carbon sequestration potential through improved cropland management.
    Lessmann M; Ros GH; Young MD; de Vries W
    Glob Chang Biol; 2022 Feb; 28(3):1162-1177. PubMed ID: 34726814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa.
    Chivenge P; Mabhaudhi T; Modi AT; Mafongoya P
    Int J Environ Res Public Health; 2015 May; 12(6):5685-711. PubMed ID: 26016431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study.
    Beach RH; Sulser TB; Crimmins A; Cenacchi N; Cole J; Fukagawa NK; Mason-D'Croz D; Myers S; Sarofim MC; Smith M; Ziska LH
    Lancet Planet Health; 2019 Jul; 3(7):e307-e317. PubMed ID: 31326071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Missing association between nutrient concentrations in leaves and edible parts of food crops - A neglected food security issue.
    Fischer S; Hilger T; Piepho HP; Jordan I; Cadisch G
    Food Chem; 2021 May; 345():128723. PubMed ID: 33333357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticipated burden and mitigation of carbon-dioxide-induced nutritional deficiencies and related diseases: A simulation modeling study.
    Weyant C; Brandeau ML; Burke M; Lobell DB; Bendavid E; Basu S
    PLoS Med; 2018 Jul; 15(7):e1002586. PubMed ID: 29969442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets.
    Schneider JM; Zabel F; Schünemann F; Delzeit R; Mauser W
    PLoS One; 2022; 17(2):e0263063. PubMed ID: 35192630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon sequestration in European croplands.
    Smith P; Falloon P
    SEB Exp Biol Ser; 2005; ():47-55. PubMed ID: 17633030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive impacts of climate change and agricultural management on soil organic carbon sequestration potential of cropland in China over the coming decades.
    Wang Y; Tao F; Chen Y; Yin L
    Sci Total Environ; 2022 Apr; 817():153018. PubMed ID: 35026270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detailed global modelling of soil organic carbon in cropland, grassland and forest soils.
    Morais TG; Teixeira RFM; Domingos T
    PLoS One; 2019; 14(9):e0222604. PubMed ID: 31536571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of underutilized fruits in nutritional and economic security of tribals: a review.
    Nandal U; Bhardwaj RL
    Crit Rev Food Sci Nutr; 2014; 54(7):880-90. PubMed ID: 24499067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Edible fungi crops through mycoforestry, potential for carbon negative food production and mitigation of food and forestry conflicts.
    Thomas PW; Jump AS
    Proc Natl Acad Sci U S A; 2023 Mar; 120(12):e2220079120. PubMed ID: 36913576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in Climate Vulnerability and Projected Water Stress of The Gambia's Food Supply Between 1988 and 2018: Trading With Trade-Offs.
    Hadida G; Ali Z; Kastner T; Carr TW; Prentice AM; Green R; Scheelbeek P
    Front Public Health; 2022; 10():786071. PubMed ID: 35747777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time in pasture rotation alters soil microbial community composition and function and increases carbon sequestration potential in a temperate agroecosystem.
    Lin D; McCulley RL; Nelson JA; Jacobsen KL; Zhang D
    Sci Total Environ; 2020 Jan; 698():134233. PubMed ID: 31514023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neglected role of abandoned cropland in supporting both food security and climate change mitigation.
    Zheng Q; Ha T; Prishchepov AV; Zeng Y; Yin H; Koh LP
    Nat Commun; 2023 Sep; 14(1):6083. PubMed ID: 37770491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in soil organic carbon under perennial crops.
    Ledo A; Smith P; Zerihun A; Whitaker J; Vicente-Vicente JL; Qin Z; McNamara NP; Zinn YL; Llorente M; Liebig M; Kuhnert M; Dondini M; Don A; Diaz-Pines E; Datta A; Bakka H; Aguilera E; Hillier J
    Glob Chang Biol; 2020 Jul; 26(7):4158-4168. PubMed ID: 32412147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.