BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32650103)

  • 1. Missense mutations affecting Ca
    Dal Cortivo G; Marino V; Bonì F; Milani M; Dell'Orco D
    Biochim Biophys Acta Mol Cell Res; 2020 Oct; 1867(10):118794. PubMed ID: 32650103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel p.(Glu111Val) missense mutation in GUCA1A associated with cone-rod dystrophy leads to impaired calcium sensing and perturbed second messenger homeostasis in photoreceptors.
    Marino V; Dal Cortivo G; Oppici E; Maltese PE; D'Esposito F; Manara E; Ziccardi L; Falsini B; Magli A; Bertelli M; Dell'Orco D
    Hum Mol Genet; 2018 Dec; 27(24):4204-4217. PubMed ID: 30184081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration.
    Peshenko IV; Cideciyan AV; Sumaroka A; Olshevskaya EV; Scholten A; Abbas S; Koch KW; Jacobson SG; Dizhoor AM
    J Biol Chem; 2019 Mar; 294(10):3476-3488. PubMed ID: 30622141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive Activation of Guanylate Cyclase by the G86R GCAP1 Variant Is Due to "Locking" Cation-π Interactions that Impair the Activator-to-Inhibitor Structural Transition.
    Abbas S; Marino V; Bielefeld L; Koch KW; Dell'Orco D
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31979372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired Ca
    Marino V; Dal Cortivo G; Maltese PE; Placidi G; De Siena E; Falsini B; Bertelli M; Dell'Orco D
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33919796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two retinal dystrophy-associated missense mutations in GUCA1A with distinct molecular properties result in a similar aberrant regulation of the retinal guanylate cyclase.
    Marino V; Scholten A; Koch KW; Dell'Orco D
    Hum Mol Genet; 2015 Dec; 24(23):6653-66. PubMed ID: 26358777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of cone dystrophy-related mutations in GCAP1 on a kinetic model of phototransduction.
    Dell'Orco D; Sulmann S; Zägel P; Marino V; Koch KW
    Cell Mol Life Sci; 2014 Oct; 71(19):3829-40. PubMed ID: 24566882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium binding, structural stability and guanylate cyclase activation in GCAP1 variants associated with human cone dystrophy.
    Dell'Orco D; Behnen P; Linse S; Koch KW
    Cell Mol Life Sci; 2010 Mar; 67(6):973-84. PubMed ID: 20213926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights for activation of retinal guanylate cyclase by GCAP1.
    Lim S; Peshenko IV; Dizhoor AM; Ames JB
    PLoS One; 2013; 8(11):e81822. PubMed ID: 24236217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GCAP1 mutations associated with autosomal dominant cone dystrophy.
    Jiang L; Baehr W
    Adv Exp Med Biol; 2010; 664():273-82. PubMed ID: 20238026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel
    Biasi A; Marino V; Dal Cortivo G; Maltese PE; Modarelli AM; Bertelli M; Colombo L; Dell'Orco D
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural effects of Mg²⁺ on the regulatory states of three neuronal calcium sensors operating in vertebrate phototransduction.
    Marino V; Sulmann S; Koch KW; Dell'Orco D
    Biochim Biophys Acta; 2015 Sep; 1853(9):2055-65. PubMed ID: 25447547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) Mutant V77E in a Ca2+-free/Mg2+-bound Activator State.
    Lim S; Peshenko IV; Olshevskaya EV; Dizhoor AM; Ames JB
    J Biol Chem; 2016 Feb; 291(9):4429-41. PubMed ID: 26703466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.
    Vinberg F; Peshenko IV; Chen J; Dizhoor AM; Kefalov VJ
    J Biol Chem; 2018 May; 293(19):7457-7465. PubMed ID: 29549122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Ca2+, Mg2+, and myristoylation on guanylyl cyclase activating protein 1 structure and stability.
    Lim S; Peshenko I; Dizhoor A; Ames JB
    Biochemistry; 2009 Feb; 48(5):850-62. PubMed ID: 19143494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Guanylate Cyclase Activating Protein 1 (GCAP1) Dimeric Assembly by Ca
    Bonì F; Marino V; Bidoia C; Mastrangelo E; Barbiroli A; Dell'Orco D; Milani M
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33027977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the calcium sensor GCAP1 in hereditary cone dystrophies.
    Behnen P; Dell'Orco D; Koch KW
    Biol Chem; 2010 Jun; 391(6):631-7. PubMed ID: 20370318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs).
    Ames JB
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity.
    Peshenko IV; Olshevskaya EV; Lim S; Ames JB; Dizhoor AM
    J Biol Chem; 2012 Apr; 287(17):13972-84. PubMed ID: 22383530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric communication pathways routed by Ca
    Marino V; Dell'Orco D
    Sci Rep; 2016 Oct; 6():34277. PubMed ID: 27739433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.