These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
475 related articles for article (PubMed ID: 32650452)
21. Ninjurin1 deficiency aggravates colitis development by promoting M1 macrophage polarization and inducing microbial imbalance. Choi H; Bae SJ; Choi G; Lee H; Son T; Kim JG; An S; Lee HS; Seo JH; Kwon HB; Jeon S; Oh GT; Surh YJ; Kim KW FASEB J; 2020 Jun; 34(6):8702-8720. PubMed ID: 32385864 [TBL] [Abstract][Full Text] [Related]
22. The role of diet in shaping human gut microbiota. Rinninella E; Tohumcu E; Raoul P; Fiorani M; Cintoni M; Mele MC; Cammarota G; Gasbarrini A; Ianiro G Best Pract Res Clin Gastroenterol; 2023; 62-63():101828. PubMed ID: 37094913 [TBL] [Abstract][Full Text] [Related]
23. The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Masheghati F; Asgharzadeh MR; Jafari A; Masoudi N; Maleki-Kakelar H Life Sci; 2024 May; 344():122529. PubMed ID: 38490297 [TBL] [Abstract][Full Text] [Related]
24. A Crosstalk between Diet, Microbiome and microRNA in Epigenetic Regulation of Colorectal Cancer. Guz M; Jeleniewicz W; Malm A; Korona-Glowniak I Nutrients; 2021 Jul; 13(7):. PubMed ID: 34371938 [TBL] [Abstract][Full Text] [Related]
25. Diet-Microbiota Interplay: An Emerging Player in Macrophage Plasticity and Intestinal Health. O'Mahony C; Amamou A; Ghosh S Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409260 [TBL] [Abstract][Full Text] [Related]
26. Tryptophan Dietary Impacts Gut Barrier and Metabolic Diseases. Taleb S Front Immunol; 2019; 10():2113. PubMed ID: 31552046 [TBL] [Abstract][Full Text] [Related]
27. Macrophage interactions with fungi and bacteria in inflammatory bowel disease. Leonardi I; Li X; Iliev ID Curr Opin Gastroenterol; 2018 Nov; 34(6):392-397. PubMed ID: 30239343 [TBL] [Abstract][Full Text] [Related]
28. The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance. Mola S; Pandolfo C; Sica A; Porta C Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962159 [TBL] [Abstract][Full Text] [Related]
29. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an Carbajo-Pescador S; Porras D; García-Mediavilla MV; Martínez-Flórez S; Juarez-Fernández M; Cuevas MJ; Mauriz JL; González-Gallego J; Nistal E; Sánchez-Campos S Dis Model Mech; 2019 Apr; 12(5):. PubMed ID: 30971408 [TBL] [Abstract][Full Text] [Related]
30. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. Rizzetto L; Fava F; Tuohy KM; Selmi C J Autoimmun; 2018 Aug; 92():12-34. PubMed ID: 29861127 [TBL] [Abstract][Full Text] [Related]
31. Emerging Role of Diet and Microbiota Interactions in Neuroinflammation. Janakiraman M; Krishnamoorthy G Front Immunol; 2018; 9():2067. PubMed ID: 30254641 [TBL] [Abstract][Full Text] [Related]
32. Gut microbiota and oleoylethanolamide in the regulation of intestinal homeostasis. De Filippo C; Costa A; Becagli MV; Monroy MM; Provensi G; Passani MB Front Endocrinol (Lausanne); 2023; 14():1135157. PubMed ID: 37091842 [TBL] [Abstract][Full Text] [Related]
33. A Special Network Comprised of Macrophages, Epithelial Cells, and Gut Microbiota for Gut Homeostasis. Chen W; Liu D; Ren C; Su X; Wong CK; Yang R Cells; 2022 Jan; 11(2):. PubMed ID: 35053422 [TBL] [Abstract][Full Text] [Related]
34. Gut microbiota imbalance and colorectal cancer. Gagnière J; Raisch J; Veziant J; Barnich N; Bonnet R; Buc E; Bringer MA; Pezet D; Bonnet M World J Gastroenterol; 2016 Jan; 22(2):501-18. PubMed ID: 26811603 [TBL] [Abstract][Full Text] [Related]
35. Regulation of homeostasis and inflammation in the intestine. MacDonald TT; Monteleone I; Fantini MC; Monteleone G Gastroenterology; 2011 May; 140(6):1768-75. PubMed ID: 21530743 [TBL] [Abstract][Full Text] [Related]
36. Functions of Macrophages in the Maintenance of Intestinal Homeostasis. Wang S; Ye Q; Zeng X; Qiao S J Immunol Res; 2019; 2019():1512969. PubMed ID: 31011585 [TBL] [Abstract][Full Text] [Related]
37. Dietary quercetin ameliorates experimental colitis in mouse by remodeling the function of colonic macrophages via a heme oxygenase-1-dependent pathway. Ju S; Ge Y; Li P; Tian X; Wang H; Zheng X; Ju S Cell Cycle; 2018; 17(1):53-63. PubMed ID: 28976231 [TBL] [Abstract][Full Text] [Related]
38. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet. Zhang L; Andersen D; Roager HM; Bahl MI; Hansen CH; Danneskiold-Samsøe NB; Kristiansen K; Radulescu ID; Sina C; Frandsen HL; Hansen AK; Brix S; Hellgren LI; Licht TR Sci Rep; 2017 Mar; 7():44613. PubMed ID: 28300220 [TBL] [Abstract][Full Text] [Related]
39. The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. De Angelis M; Garruti G; Minervini F; Bonfrate L; Portincasa P; Gobbetti M Curr Med Chem; 2019; 26(19):3567-3583. PubMed ID: 28462705 [TBL] [Abstract][Full Text] [Related]
40. High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers. Gohir W; Kennedy KM; Wallace JG; Saoi M; Bellissimo CJ; Britz-McKibbin P; Petrik JJ; Surette MG; Sloboda DM J Physiol; 2019 Jun; 597(12):3029-3051. PubMed ID: 31081119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]