These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32650540)

  • 1. Floating Ni Capping for High-Mobility p-Channel SnO Thin-Film Transistors.
    Shin MG; Bae KH; Cha HS; Jeong HS; Kim DH; Kwon HI
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32650540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Capping Layers with Different Metals on Electrical Performance and Stability of p-Channel SnO Thin-Film Transistors.
    Shin MG; Bae KH; Jeong HS; Kim DH; Cha HS; Kwon HI
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 33008074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P-type Cu(2)O/SnO bilayer thin film transistors processed at low temperatures.
    Al-Jawhari HA; Caraveo-Frescas JA; Hedhili MN; Alshareef HN
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9615-9. PubMed ID: 24025476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomically Thin Tin Monoxide-Based p-Channel Thin-Film Transistor and a Low-Power Complementary Inverter.
    Huang CH; Tang Y; Yang TY; Chueh YL; Nomura K
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52783-52792. PubMed ID: 34719921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-voltage operation of ZrO2-gated n-type thin-film transistors based on a channel formed by hybrid phases of SnO and SnO2.
    Chu HC; Shen YS; Hsieh CH; Huang JH; Wu YH
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15129-37. PubMed ID: 26148216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lanthanum Doping Enabling High Drain Current Modulation in a p-Type Tin Monoxide Thin-Film Transistor.
    Yim S; Kim T; Yoo B; Xu H; Youn Y; Han S; Jeong JK
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47025-47036. PubMed ID: 31741376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Intrinsic Electrical Characteristics and Contact Effects in p-Type Tin Monoxide Thin-Film Transistors Using Gated-Four-Probe Measurements.
    Han YJ; Choi YJ; Jeong H; Kwon HI
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7582-5. PubMed ID: 26726376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Dense and Stable p-Type Thin-Film Transistor Based on Atomic Layer Deposition SnO Fabricated by Two-Step Crystallization.
    Kim HM; Choi SH; Jeong HJ; Lee JH; Kim J; Park JS
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30818-30825. PubMed ID: 34156823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Performance Complementary Circuits Based on p-SnO and n-IGZO Thin-Film Transistors.
    Zhang J; Yang J; Li Y; Wilson J; Ma X; Xin Q; Song A
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exceedingly High Performance Top-Gate P-Type SnO Thin Film Transistor with a Nanometer Scale Channel Layer.
    Yen TJ; Chin A; Gritsenko V
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching Enhancement via a Back-Channel Phase-Controlling Layer for p-Type Copper Oxide Thin-Film Transistors.
    Min WK; Park SP; Kim HJ; Lee JH; Park K; Kim D; Kim KW; Kim HJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24929-24939. PubMed ID: 32390437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the Solution-Based Indium-Zinc Oxide/Zinc-Tin Oxide Channel Layer for Thin-Film Transistors.
    Lim K; Choi P; Kim S; Kim H; Kim M; Lee J; Hyeon Y; Koo K; Choi B
    J Nanosci Nanotechnol; 2018 Sep; 18(9):5913-5918. PubMed ID: 29677716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Ambipolar Transport in SnO Thin-Film Transistors by Back-Channel Surface Passivation for High Performance Complementary-like Inverters.
    Luo H; Liang L; Cao H; Dai M; Lu Y; Wang M
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17023-31. PubMed ID: 26189702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical Performance and Bias-Stress Stability of Amorphous InGaZnO Thin-Film Transistors with Buried-Channel Layers.
    Zhang Y; Xie H; Dong C
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31739504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation Between Currents, X-ray Diffraction Patterns and Transfer Characteristics of SnO₂ Thin Film Transistor.
    Oh T
    J Nanosci Nanotechnol; 2019 Apr; 19(4):2174-2178. PubMed ID: 30486962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved electrical performance of an oxide thin-film transistor having multistacked active layers using a solution process.
    Kim DJ; Kim DL; Rim YS; Kim CH; Jeong WH; Lim HS; Kim HJ
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4001-5. PubMed ID: 22796901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remarkably High-Performance Nanosheet GeSn Thin-Film Transistor.
    Yen TJ; Chin A; Chan WK; Chen HT; Gritsenko V
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remarkably High Hole Mobility Metal-Oxide Thin-Film Transistors.
    Shih CW; Chin A; Lu CF; Su WF
    Sci Rep; 2018 Jan; 8(1):889. PubMed ID: 29343726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the Active Channel Thickness Variation in Amorphous In-Zn-Sn-O Thin Film Transistor.
    Lestari AD; Noviyana I; Putri M; Heo YW; Lee HY
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1686-1689. PubMed ID: 30469246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Voltage Metal-Oxide Thin Film Transistors Using
    Chen YL; Liou GL; Hsu HH; Chen PC; Zheng ZW; Wu YH; Cheng CH; Liu CH; Chung LH
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5619-5623. PubMed ID: 30961716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.