BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 32650589)

  • 1. Bone Regeneration Capability of 3D Printed Ceramic Scaffolds.
    Kim JW; Yang BE; Hong SJ; Choi HG; Byeon SJ; Lim HK; Chung SM; Lee JH; Byun SH
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32650589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone Regeneration of a 3D-Printed Alloplastic and Particulate Xenogenic Graft with rhBMP-2.
    Ryu JI; Yang BE; Yi SM; Choi HG; On SW; Hong SJ; Lim HK; Byun SH
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures.
    Lim HK; Hong SJ; Byeon SJ; Chung SM; On SW; Yang BE; Lee JH; Byun SH
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison between the efficacy of Bio-Oss, hydroxyapatite tricalcium phosphate and combination of mesenchymal stem cells in inducing bone regeneration.
    Vahabi S; Amirizadeh N; Shokrgozar MA; Mofeed R; Mashhadi A; Aghaloo M; Sharifi D; Jabbareh L
    Chang Gung Med J; 2012; 35(1):28-37. PubMed ID: 22483425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenesis of 3D-Printed PCL/TCP/bdECM Scaffold Using Adipose-Derived Stem Cells Aggregates; An Experimental Study in the Canine Mandible.
    Lee JS; Park TH; Ryu JY; Kim DK; Oh EJ; Kim HM; Shim JH; Yun WS; Huh JB; Moon SH; Kang SS; Chung HY
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.
    Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed polycaprolactone scaffold mixed with β-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects.
    Pae HC; Kang JH; Cha JK; Lee JS; Paik JW; Jung UW; Kim BH; Choi SH
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1254-1263. PubMed ID: 30300967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different HA/β-TCP coated 3D printed bioceramic scaffolds on repairing large bone defects in rabbits.
    Wen J; Song M; Zeng Y; Dong X
    J Orthop Surg (Hong Kong); 2023; 31(3):10225536231222121. PubMed ID: 38118163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a tunnel-structured β-tricalcium phosphate graft material on periodontal regeneration: a pilot study in a canine one-wall intrabony defect model.
    Matsuura T; Akizuki T; Hoshi S; Ikawa T; Kinoshita A; Sunaga M; Oda S; Kuboki Y; Izumi Y
    J Periodontal Res; 2015 Jun; 50(3):347-55. PubMed ID: 25040655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction.
    Lee S; Choi D; Shim JH; Nam W
    Sci Rep; 2020 Mar; 10(1):4979. PubMed ID: 32188900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenesis ability of CAD-CAM biodegradable polylactic acid scaffolds for reconstruction of jaw defects.
    Helal MH; Hendawy HD; Gaber RA; Helal NR; Aboushelib MN
    J Prosthet Dent; 2019 Jan; 121(1):118-123. PubMed ID: 29961633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds.
    Bertol LS; Schabbach R; Loureiro Dos Santos LA
    J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation and bone formation of various polyethylene glycol hydrogels in acute and chronic sites in mini-pigs.
    Thoma DS; Schneider D; Mir-Mari J; Hämmerle CH; Gemperli AC; Molenberg A; Dard M; Jung RE
    Clin Oral Implants Res; 2014 Apr; 25(4):511-21. PubMed ID: 23758284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Three-Dimensional Composite Scaffold for Simultaneous Alveolar Bone Regeneration in Dental Implant Installation.
    Jeong HJ; Gwak SJ; Seo KD; Lee S; Yun JH; Cho YS; Lee SJ
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32182824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of three block bone substitutes for bone regeneration: long-term observation in the beagle dog.
    Sawada K; Nakahara K; Haga-Tsujimura M; Iizuka T; Fujioka-Kobayashi M; Igarashi K; Saulacic N
    Odontology; 2018 Oct; 106(4):398-407. PubMed ID: 29557992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.