BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 32650608)

  • 1. Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress.
    Kumar H; Bhardwaj K; Nepovimova E; Kuča K; Dhanjal DS; Bhardwaj S; Bhatia SK; Verma R; Kumar D
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32650608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications.
    Khalil I; Yehye WA; Etxeberria AE; Alhadi AA; Dezfooli SM; Julkapli NBM; Basirun WJ; Seyfoddin A
    Antioxidants (Basel); 2019 Dec; 9(1):. PubMed ID: 31888023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidants, oxidative damage and oxygen deprivation stress: a review.
    Blokhina O; Virolainen E; Fagerstedt KV
    Ann Bot; 2003 Jan; 91 Spec No(2):179-94. PubMed ID: 12509339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.
    Gill SS; Tuteja N
    Plant Physiol Biochem; 2010 Dec; 48(12):909-30. PubMed ID: 20870416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant compounds from microbial sources: A review.
    Chandra P; Sharma RK; Arora DS
    Food Res Int; 2020 Mar; 129():108849. PubMed ID: 32036890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation.
    Ashok A; Andrabi SS; Mansoor S; Kuang Y; Kwon BK; Labhasetwar V
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative damage and antioxidative system in algae.
    Rezayian M; Niknam V; Ebrahimzadeh H
    Toxicol Rep; 2019; 6():1309-1313. PubMed ID: 31993331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response.
    Szarka A; Tomasskovics B; Bánhegyi G
    Int J Mol Sci; 2012; 13(4):4458-4483. PubMed ID: 22605990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation of manganese dioxide nanoparticles into layer-by-layer polymer capsules for the fabrication of antioxidant microreactors.
    Marin E; Tapeinos C; Lauciello S; Ciofani G; Sarasua JR; Larrañaga A
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111349. PubMed ID: 32919694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: A review.
    Zia-Ur-Rehman M; Anayatullah S; Irfan E; Hussain SM; Rizwan M; Sohail MI; Jafir M; Ahmad T; Usman M; Alharby HF
    Chemosphere; 2023 Feb; 314():137649. PubMed ID: 36587917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications.
    Rani A; Saini KC; Bast F; Mehariya S; Bhatia SK; Lavecchia R; Zuorro A
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33672774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pleiotropic functions of antioxidant nanoparticles for longevity and medicine.
    Narayanan KB; Park HH
    Adv Colloid Interface Sci; 2013 Dec; 201-202():30-42. PubMed ID: 24206941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles.
    Flieger J; Flieger W; Baj J; Maciejewski R
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: Trends, meta-analysis, and prospect.
    Liu Y; Xiao Z; Chen F; Yue L; Zou H; Lyu J; Wang Z
    Sci Total Environ; 2021 Aug; 780():146578. PubMed ID: 34030327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of antioxidants in the chemistry of oxidative stress: A review.
    Pisoschi AM; Pop A
    Eur J Med Chem; 2015 Jun; 97():55-74. PubMed ID: 25942353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tannic Acid-Iron Complex-Based Nanoparticles as a Novel Tool against Oxidative Stress.
    Pucci C; Martinelli C; De Pasquale D; Battaglini M; di Leo N; Degl'Innocenti A; Belenli Gümüş M; Drago F; Ciofani G
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):15927-15941. PubMed ID: 35352893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity.
    Hasanuzzaman M; Raihan MRH; Masud AAC; Rahman K; Nowroz F; Rahman M; Nahar K; Fujita M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection?
    White JF; Torres MS
    Physiol Plant; 2010 Apr; 138(4):440-6. PubMed ID: 20028480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species signaling in plants under abiotic stress.
    Choudhury S; Panda P; Sahoo L; Panda SK
    Plant Signal Behav; 2013 Apr; 8(4):e23681. PubMed ID: 23425848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.