These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32650641)

  • 1. Using Photoexcited Core/Shell Quantum Dots To Spin Polarize Appended Radical Qubits.
    Olshansky JH; Harvey SM; Pennel ML; Krzyaniak MD; Schaller RD; Wasielewski MR
    J Am Chem Soc; 2020 Aug; 142(31):13590-13597. PubMed ID: 32650641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Contributions to Mn(2+) Spin Dynamics in Colloidal Doped Quantum Dots.
    Schimpf AM; Ochsenbein ST; Gamelin DR
    J Phys Chem Lett; 2015 Feb; 6(3):457-63. PubMed ID: 26261963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS.
    Ratnesh RK; Mehata MS
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():201-210. PubMed ID: 28242450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning Hole and Electron Transfer from Photoexcited CdSe Quantum Dots to Phenol Derivatives: Effect of Electron-Donating and -Withdrawing Moieties.
    Debnath T; Sebastian D; Maiti S; Ghosh HN
    Chemistry; 2017 May; 23(30):7306-7314. PubMed ID: 28345273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing photo-reduction quantum efficiency using quasi-type II core/shell quantum dots.
    Jia Y; Chen J; Wu K; Kaledin A; Musaev DG; Xie Z; Lian T
    Chem Sci; 2016 Jul; 7(7):4125-4133. PubMed ID: 30155056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct detection of spin polarization in photoinduced charge transfer through a chiral bridge.
    Privitera A; Macaluso E; Chiesa A; Gabbani A; Faccio D; Giuri D; Briganti M; Giaconi N; Santanni F; Jarmouni N; Poggini L; Mannini M; Chiesa M; Tomasini C; Pineider F; Salvadori E; Carretta S; Sessoli R
    Chem Sci; 2022 Oct; 13(41):12208-12218. PubMed ID: 36349110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast hole extraction from photoexcited colloidal CdSe quantum dots coupled to nitroxide free radicals.
    Dutta P; Tang Y; Mi C; Saniepay M; McGuire JA; Beaulac R
    J Chem Phys; 2019 Nov; 151(17):174706. PubMed ID: 31703504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical characterization of core-shell quantum dots embedded in synthetic saliva: Temporal dynamics.
    de Santana JF; Pilla V; Silva AC; Dantas NO; Messias DN; Andrade AA
    J Photochem Photobiol B; 2015 Oct; 151():208-12. PubMed ID: 26313857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots.
    Rabouw FT; Vaxenburg R; Bakulin AA; van Dijk-Moes RJ; Bakker HJ; Rodina A; Lifshitz E; L Efros A; Koenderink AF; Vanmaekelbergh D
    ACS Nano; 2015 Oct; 9(10):10366-76. PubMed ID: 26389562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal Quantum Dots as Platforms for Quantum Information Science.
    Kagan CR; Bassett LC; Murray CB; Thompson SM
    Chem Rev; 2021 Mar; 121(5):3186-3233. PubMed ID: 33372773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photogenerated Spin-Entangled Qubit (Radical) Pairs in DNA Hairpins: Observation of Spin Delocalization and Coherence.
    Olshansky JH; Krzyaniak MD; Young RM; Wasielewski MR
    J Am Chem Soc; 2019 Feb; 141(5):2152-2160. PubMed ID: 30636401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination.
    Hyeon-Deuk K; Prezhdo OV
    J Phys Condens Matter; 2012 Sep; 24(36):363201. PubMed ID: 22906924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring the interfacial structure of colloidal "giant" quantum dots for optoelectronic applications.
    Zhao H; Liu J; Vidal F; Vomiero A; Rosei F
    Nanoscale; 2018 Sep; 10(36):17189-17197. PubMed ID: 30191225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Phonon Damping Behavior in Quantum Dots Capped with Organic and Inorganic Ligands.
    Schnitzenbaumer KJ; Dukovic G
    Nano Lett; 2018 Jun; 18(6):3667-3674. PubMed ID: 29781281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminescence properties and exciton dynamics of core-multi-shell semiconductor quantum dots leading to QLEDs.
    Mehata MS; Ratnesh RK
    Dalton Trans; 2019 Jun; 48(22):7619-7631. PubMed ID: 31070635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shell Thickness Engineering Significantly Boosts the Photocatalytic H
    Wang P; Wang M; Zhang J; Li C; Xu X; Jin Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35712-35720. PubMed ID: 28952304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots.
    Purcell-Milton F; Visheratina AK; Kuznetsova VA; Ryan A; Orlova AO; Gun'ko YK
    ACS Nano; 2017 Sep; 11(9):9207-9214. PubMed ID: 28820937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ideal CdSe/CdS Core/Shell Nanocrystals Enabled by Entropic Ligands and Their Core Size-, Shell Thickness-, and Ligand-Dependent Photoluminescence Properties.
    Zhou J; Zhu M; Meng R; Qin H; Peng X
    J Am Chem Soc; 2017 Nov; 139(46):16556-16567. PubMed ID: 29094943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.