BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32650955)

  • 1. Advances in the Fabrication of Biomaterials for Gradient Tissue Engineering.
    Li C; Ouyang L; Armstrong JPK; Stevens MM
    Trends Biotechnol; 2021 Feb; 39(2):150-164. PubMed ID: 32650955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing for the design and fabrication of polymer-based gradient scaffolds.
    Bracaglia LG; Smith BT; Watson E; Arumugasaamy N; Mikos AG; Fisher JP
    Acta Biomater; 2017 Jul; 56():3-13. PubMed ID: 28342878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linguistic Analysis Identifies Emergent Biomaterial Fabrication Trends for Orthopaedic Applications.
    Locke RC; Zlotnick HM; Stoeckl BD; Fryhofer GW; Galarraga JH; Dhand AP; Zgonis MH; Carey JL; Burdick JA; Mauck RL
    Adv Healthc Mater; 2023 Apr; 12(10):e2202591. PubMed ID: 36657736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally graded biomaterials for use as model systems and replacement tissues.
    Lowen JM; Leach JK
    Adv Funct Mater; 2020 Oct; 30(44):. PubMed ID: 33456431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks.
    Ouyang L; Armstrong JPK; Lin Y; Wojciechowski JP; Lee-Reeves C; Hachim D; Zhou K; Burdick JA; Stevens MM
    Sci Adv; 2020 Sep; 6(38):. PubMed ID: 32948593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-Sorting Create Heterogeneity: Constructing A Multifunctional Janus Film with Integrated Compositional and Microstructural Gradients for Guided Bone Regeneration.
    Lei M; Liao H; Wang S; Zhou H; Zhu J; Wan H; Payne GF; Liu C; Qu X
    Adv Sci (Weinh); 2024 Mar; 11(12):e2307606. PubMed ID: 38225697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient porous structures of mycelium: a quantitative structure-mechanical property analysis.
    Olivero E; Gawronska E; Manimuda P; Jivani D; Chaggan FZ; Corey Z; de Almeida TS; Kaplan-Bie J; McIntyre G; Wodo O; Nalam PC
    Sci Rep; 2023 Nov; 13(1):19285. PubMed ID: 37935723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic wood-hydrogel composites: Extending mechanical properties of wood towards soft materials' applications.
    Koch SM; Goldhahn C; Müller FJ; Yan W; Pilz-Allen C; Bidan CM; Ciabattoni B; Stricker L; Fratzl P; Keplinger T; Burgert I
    Mater Today Bio; 2023 Oct; 22():100772. PubMed ID: 37674781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofabrication of functional bone tissue: defining tissue-engineered scaffolds from nature.
    Rifai A; Weerasinghe DK; Tilaye GA; Nisbet D; Hodge JM; Pasco JA; Williams LJ; Samarasinghe RM; Williams RJ
    Front Bioeng Biotechnol; 2023; 11():1185841. PubMed ID: 37614632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Polymeric Drug Delivery Systems for Peripheral Nerve Regeneration.
    Bianchini M; Micera S; Redolfi Riva E
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36839962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From mesenchymal niches to engineered
    Ghuloum FI; Johnson CA; Riobo-Del Galdo NA; Amer MH
    Mater Today Bio; 2022 Dec; 17():100502. PubMed ID: 36457847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprinting of Human Neural Tissues Using a Sustainable Marine Tunicate-Derived Bioink for Translational Medicine Applications.
    Soman SS; Govindraj M; Al Hashimi N; Zhou J; Vijayavenkataraman S
    Int J Bioprint; 2022; 8(4):604. PubMed ID: 36404791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An all-silk-derived bilayer hydrogel for osteochondral tissue engineering.
    Jiang W; Xiang X; Song M; Shen J; Shi Z; Huang W; Liu H
    Mater Today Bio; 2022 Dec; 17():100485. PubMed ID: 36388458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineering the human spinal cord.
    Iyer NR; Ashton RS
    Front Cell Dev Biol; 2022; 10():942742. PubMed ID: 36092702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Laden Gradient Microgel Suspensions for Spatial Control of Differentiation During Biofabrication.
    Molley TG; Hung TT; Kilian KA
    Adv Healthc Mater; 2022 Dec; 11(24):e2201122. PubMed ID: 35866537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible-Light Stiffness Patterning of GelMA Hydrogels Towards
    Chalard AE; Dixon AW; Taberner AJ; Malmström J
    Front Cell Dev Biol; 2022; 10():946754. PubMed ID: 35865624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives.
    Niu X; Li N; Du Z; Li X
    Bioact Mater; 2023 Feb; 20():574-597. PubMed ID: 35846846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evaluation of additively manufactured multi-layered scaffold for the repair of large osteochondral defects.
    Tamaddon M; Blunn G; Tan R; Yang P; Sun X; Chen SM; Luo J; Liu Z; Wang L; Li D; Donate R; Monzón M; Liu C
    Biodes Manuf; 2022; 5(3):481-496. PubMed ID: 35846348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue Engineering Cartilage with Deep Zone Cytoarchitecture by High-Resolution Acoustic Cell Patterning.
    Armstrong JPK; Pchelintseva E; Treumuth S; Campanella C; Meinert C; Klein TJ; Hutmacher DW; Drinkwater BW; Stevens MM
    Adv Healthc Mater; 2022 Dec; 11(24):e2200481. PubMed ID: 35815530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model.
    Zlotnick HM; Locke RC; Hemdev S; Stoeckl BD; Gupta S; Peredo AP; Steinberg DR; Carey JL; Lee D; Dodge GR; Mauck RL
    Biofabrication; 2022 Jul; 14(4):. PubMed ID: 35714576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.