BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 32651257)

  • 21. Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway?
    Sfeir A; Symington LS
    Trends Biochem Sci; 2015 Nov; 40(11):701-714. PubMed ID: 26439531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the DNA double-strand break repair and its therapeutic implications.
    Ray U; Raghavan SC
    DNA Repair (Amst); 2021 Oct; 106():103177. PubMed ID: 34325086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant organellar DNA polymerases repair double-stranded breaks by microhomology-mediated end-joining.
    García-Medel PL; Baruch-Torres N; Peralta-Castro A; Trasviña-Arenas CH; Torres-Larios A; Brieba LG
    Nucleic Acids Res; 2019 Apr; 47(6):3028-3044. PubMed ID: 30698803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions.
    Tadi SK; Sebastian R; Dahal S; Babu RK; Choudhary B; Raghavan SC
    Mol Biol Cell; 2016 Jan; 27(2):223-35. PubMed ID: 26609070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways.
    Sallmyr A; Tomkinson AE
    J Biol Chem; 2018 Jul; 293(27):10536-10546. PubMed ID: 29530982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks.
    Deng SK; Gibb B; de Almeida MJ; Greene EC; Symington LS
    Nat Struct Mol Biol; 2014 Apr; 21(4):405-12. PubMed ID: 24608368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alternative end-joining and classical nonhomologous end-joining pathways repair different types of double-strand breaks during class-switch recombination.
    Cortizas EM; Zahn A; Hajjar ME; Patenaude AM; Di Noia JM; Verdun RE
    J Immunol; 2013 Dec; 191(11):5751-63. PubMed ID: 24146042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PLK1 targets CtIP to promote microhomology-mediated end joining.
    Wang H; Qiu Z; Liu B; Wu Y; Ren J; Liu Y; Zhao Y; Wang Y; Hao S; Li Z; Peng B; Xu X
    Nucleic Acids Res; 2018 Nov; 46(20):10724-10739. PubMed ID: 30202980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human papillomavirus 16 promotes microhomology-mediated end-joining.
    Leeman JE; Li Y; Bell A; Hussain SS; Majumdar R; Rong-Mullins X; Blecua P; Damerla R; Narang H; Ravindran PT; Lee NY; Riaz N; Powell SN; Higginson DS
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21573-21579. PubMed ID: 31591214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings.
    McVey M; Lee SE
    Trends Genet; 2008 Nov; 24(11):529-38. PubMed ID: 18809224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae.
    Meyer D; Fu BX; Heyer WD
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):E6907-16. PubMed ID: 26607450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RHINO directs MMEJ to repair DNA breaks in mitosis.
    Brambati A; Sacco O; Porcella S; Heyza J; Kareh M; Schmidt JC; Sfeir A
    Science; 2023 Aug; 381(6658):653-660. PubMed ID: 37440612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining.
    Rahal EA; Henricksen LA; Li Y; Williams RS; Tainer JA; Dixon K
    Cell Cycle; 2010 Jul; 9(14):2866-77. PubMed ID: 20647759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle.
    Taleei R; Nikjoo H
    Mutat Res; 2013 Aug; 756(1-2):206-12. PubMed ID: 23792210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The complexity of DNA double strand breaks is a critical factor enhancing end-resection.
    Yajima H; Fujisawa H; Nakajima NI; Hirakawa H; Jeggo PA; Okayasu R; Fujimori A
    DNA Repair (Amst); 2013 Nov; 12(11):936-46. PubMed ID: 24041488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-stranded DNA oligomers stimulate error-prone alternative repair of DNA double-strand breaks through hijacking Ku protein.
    Yuan Y; Britton S; Delteil C; Coates J; Jackson SP; Barboule N; Frit P; Calsou P
    Nucleic Acids Res; 2015 Dec; 43(21):10264-76. PubMed ID: 26350212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA polymerase theta (Polθ) - an error-prone polymerase necessary for genome stability.
    Brambati A; Barry RM; Sfeir A
    Curr Opin Genet Dev; 2020 Feb; 60():119-126. PubMed ID: 32302896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA polymerase θ (POLQ), double-strand break repair, and cancer.
    Wood RD; Doublié S
    DNA Repair (Amst); 2016 Aug; 44():22-32. PubMed ID: 27264557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prevalence of Mutation-Prone Microhomology-Mediated End Joining in a Chordate Lacking the c-NHEJ DNA Repair Pathway.
    Deng W; Henriet S; Chourrout D
    Curr Biol; 2018 Oct; 28(20):3337-3341.e4. PubMed ID: 30293719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.