These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3265139)

  • 21. Origins of serotonin-like immunoreactivity in the optic tectum of Rana pipiens.
    Liu Q; Debski EA
    J Comp Neurol; 1995 Feb; 352(2):280-96. PubMed ID: 7721995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substance P, bombesin, and leucine-enkephalin immunoreactivities are restored in the frog tectum after optic nerve regeneration.
    Humphrey MF; Renshaw GM; Kitchener PD; Beazley LD
    J Comp Neurol; 1995 Apr; 354(2):295-305. PubMed ID: 7540184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eph/ephrin gradients in the retinotectal system of Rana pipiens: developmental and adult expression patterns.
    Scalia F; Currie JR; Feldheim DA
    J Comp Neurol; 2009 May; 514(1):30-48. PubMed ID: 19260054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A physiological measure of shifting connections in the Rana pipiens retinotectal system.
    Fraser SE; Hunt RK
    J Embryol Exp Morphol; 1986 Jun; 94():149-61. PubMed ID: 3489803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spreading of hemiretinal projections in the ipsilateral tectum following unilateral enucleation: a study of optic nerve regeneration in Xenopus with one compound eye.
    Straznicky C; Tay D
    J Embryol Exp Morphol; 1981 Feb; 61():259-76. PubMed ID: 7264545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The development of retina and the optic tectum of petromyzon marinus, L. A light microscopic study.
    de Miguel E; Anadón R
    J Hirnforsch; 1987; 28(4):445-56. PubMed ID: 3655334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substance P-containing ganglion cells become progressively less detectable during retinotectal development in the frog Rana pipiens.
    Kuljis RO; Karten HJ
    Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5736-40. PubMed ID: 2426705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuronal death during development in the isthmo-optic nucleus of the chick: sustaining role of afferents from the tectum.
    Clarke PG
    J Comp Neurol; 1985 Apr; 234(3):365-79. PubMed ID: 3988990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eph/ephrin A- and B-family expression patterns in the leopard frog (Rana utricularia).
    Scalia F; Feldheim DA
    Brain Res Dev Brain Res; 2005 Aug; 158(1-2):102-6. PubMed ID: 16002151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of the optic tecta in the frog Limnodynastes dorsalis.
    Dann JF; Beazley LD
    Brain Res Dev Brain Res; 1988 Nov; 44(1):21-35. PubMed ID: 3233731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of different optic nerve lesions on retinal ganglion cell death in the frog Rana pipiens.
    Humphrey MF
    J Comp Neurol; 1987 Dec; 266(2):209-19. PubMed ID: 3501791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of microglia in the quail optic tectum.
    Cuadros MA; Moujahid A; Quesada A; Navascués J
    J Comp Neurol; 1994 Oct; 348(2):207-24. PubMed ID: 7814688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in brain-derived neurotrophic factor and trkB receptor in the adult Rana pipiens retina and optic tectum after optic nerve injury.
    Duprey-Díaz MV; Soto I; Blagburn JM; Blanco RE
    J Comp Neurol; 2002 Dec; 454(4):456-69. PubMed ID: 12455009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Larval development of tectal efferents and afferents in Xenopus laevis (Amphibia Anura).
    Chahoud BH; Cordier-Picouet MJ; Clairambault P
    J Hirnforsch; 1996; 37(4):519-35. PubMed ID: 8982811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An ultrastructural comparison of neuromuscular junctions in normal and developmentally arrested Rana pipiens larvae: limited maturation in the absence of metamorphosis.
    Lynch K; Homer MJ; Harris CD; Morrissey J
    Am J Anat; 1986 May; 176(1):83-95. PubMed ID: 3487971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retinotectal map formation in dually innervated tecta: a regeneration study in Xenopus with one compound eye following bilateral optic nerve section.
    Straznicky C; Tay D
    J Comp Neurol; 1982 Apr; 206(2):119-30. PubMed ID: 7085924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets.
    Cantore WA; Scalia F
    J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-lapse in vivo imaging of the morphological development of Xenopus optic tectal interneurons.
    Wu GY; Cline HT
    J Comp Neurol; 2003 May; 459(4):392-406. PubMed ID: 12687706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alteration of larval development and metamorphosis by nitrate and perchlorate in southern leopard frogs (Rana sphenocephala).
    Ortiz-Santaliestra ME; Sparling DW
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):639-46. PubMed ID: 17657452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina.
    Matsumoto DE; Scalia F
    J Comp Neurol; 1981 Oct; 202(1):135-55. PubMed ID: 6974743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.