BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32651601)

  • 1. Transcriptional regulatory proteins in central carbon metabolism of Pichia pastoris and Saccharomyces cerevisiae.
    Kalender Ö; Çalık P
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7273-7311. PubMed ID: 32651601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nuclear transcription factor Rtg1p functions as a cytosolic, post-transcriptional regulator in the methylotrophic yeast
    Dey T; Krishna Rao K; Khatun J; Rangarajan PN
    J Biol Chem; 2018 Oct; 293(43):16647-16660. PubMed ID: 30185617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-level study of recombinant Pichia pastoris in different oxygen conditions.
    Baumann K; Carnicer M; Dragosits M; Graf AB; Stadlmann J; Jouhten P; Maaheimo H; Gasser B; Albiol J; Mattanovich D; Ferrer P
    BMC Syst Biol; 2010 Oct; 4():141. PubMed ID: 20969759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris - a comparative analysis.
    Baumann K; Dato L; Graf AB; Frascotti G; Dragosits M; Porro D; Mattanovich D; Ferrer P; Branduardi P
    BMC Genomics; 2011 May; 12():218. PubMed ID: 21554735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent Evolution of the Transcriptional Network Controlled by Snf1-Interacting Protein Sip4 in Budding Yeasts.
    Mehlgarten C; Krijger JJ; Lemnian I; Gohr A; Kasper L; Diesing AK; Grosse I; Breunig KD
    PLoS One; 2015; 10(10):e0139464. PubMed ID: 26440109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays.
    Graf A; Gasser B; Dragosits M; Sauer M; Leparc GG; Tüchler T; Kreil DP; Mattanovich D
    BMC Genomics; 2008 Aug; 9():390. PubMed ID: 18713468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level.
    Prielhofer R; Cartwright SP; Graf AB; Valli M; Bill RM; Mattanovich D; Gasser B
    BMC Genomics; 2015 Mar; 16(1):167. PubMed ID: 25887254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions.
    Gasser B; Maurer M; Rautio J; Sauer M; Bhattacharyya A; Saloheimo M; Penttilä M; Mattanovich D
    BMC Genomics; 2007 Jun; 8():179. PubMed ID: 17578563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards systems metabolic engineering in Pichia pastoris.
    Schwarzhans JP; Luttermann T; Geier M; Kalinowski J; Friehs K
    Biotechnol Adv; 2017 Nov; 35(6):681-710. PubMed ID: 28760369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid-architectured double-promoter expression systems enhance and upregulate-deregulated gene expressions in Pichia pastoris in methanol-free media.
    Demir İ; Çalık P
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8381-8397. PubMed ID: 32813064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism.
    Zhang Q; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Huang H; Yao B; Bai Y; Zhang J
    Microb Cell Fact; 2022 Jun; 21(1):112. PubMed ID: 35659241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional analysis of impacts of glycerol transporter 1 on methanol and glycerol metabolism in Pichia pastoris.
    Li X; Yang Y; Zhan C; Zhang Z; Liu X; Liu H; Bai Z
    FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29092019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanol independent induction in Pichia pastoris by simple derepressed overexpression of single transcription factors.
    Vogl T; Sturmberger L; Fauland PC; Hyden P; Fischer JE; Schmid C; Thallinger GG; Geier M; Glieder A
    Biotechnol Bioeng; 2018 Apr; 115(4):1037-1050. PubMed ID: 29280481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis of Δmig1Δmig2 mutant reveals their roles in methanol catabolism, peroxisome biogenesis and autophagy in methylotrophic yeast Pichia pastoris.
    Shi L; Wang X; Wang J; Zhang P; Qi F; Cai M; Zhang Y; Zhou X
    Genes Genomics; 2018 Apr; 40(4):399-412. PubMed ID: 29892842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Engineering of
    Zhang X; Chen S; Lin Y; Li W; Wang D; Ruan S; Yang Y; Liang S
    ACS Synth Biol; 2023 Oct; 12(10):2961-2972. PubMed ID: 37782893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant protein production in Pichia pastoris: from transcriptionally redesigned strains to bioprocess optimization and metabolic modelling.
    Ergün BG; Berrios J; Binay B; Fickers P
    FEMS Yeast Res; 2021 Dec; 21(7):. PubMed ID: 34755853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris.
    Cai P; Duan X; Wu X; Gao L; Ye M; Zhou YJ
    Nucleic Acids Res; 2021 Jul; 49(13):7791-7805. PubMed ID: 34197615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae.
    Schüller HJ
    Curr Genet; 2003 Jun; 43(3):139-60. PubMed ID: 12715202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.