BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32651916)

  • 1. Optogenetic Control of Gene Expression Using Cryptochrome 2 and a Light-Activated Degron.
    Hernández-Candia CN; Tucker CL
    Methods Mol Biol; 2020; 2173():151-158. PubMed ID: 32651916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2.
    Pathak GP; Spiltoir JI; Höglund C; Polstein LR; Heine-Koskinen S; Gersbach CA; Rossi J; Tucker CL
    Nucleic Acids Res; 2017 Nov; 45(20):e167. PubMed ID: 28431041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in optogenetic regulation of gene expression in mammalian cells using cryptochrome 2 (CRY2).
    Hernández-Candia CN; Wysoczynski CL; Tucker CL
    Methods; 2019 Jul; 164-165():81-90. PubMed ID: 30905749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Inactivation by Optogenetic Trapping in Living Cells.
    Park H; Lee S; Heo WD
    Methods Mol Biol; 2016; 1408():363-76. PubMed ID: 26965136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells.
    Che DL; Duan L; Zhang K; Cui B
    ACS Synth Biol; 2015 Oct; 4(10):1124-35. PubMed ID: 25985220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized light-inducible transcription in mammalian cells using Flavin Kelch-repeat F-box1/GIGANTEA and CRY2/CIB1.
    Quejada JR; Park SE; Awari DW; Shi F; Yamamoto HE; Kawano F; Jung JC; Yazawa M
    Nucleic Acids Res; 2017 Nov; 45(20):e172. PubMed ID: 29040770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Regulated Protein Kinases Based on the CRY2-CIB1 System.
    Mühlhäuser WW; Hörner M; Weber W; Radziwill G
    Methods Mol Biol; 2017; 1596():257-270. PubMed ID: 28293892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2.
    Park H; Kim NY; Lee S; Kim N; Kim J; Heo WD
    Nat Commun; 2017 Jun; 8(1):30. PubMed ID: 28646204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking of optical dimerizer systems.
    Pathak GP; Strickland D; Vrana JD; Tucker CL
    ACS Synth Biol; 2014 Nov; 3(11):832-8. PubMed ID: 25350266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
    An-Adirekkun JM; Stewart CJ; Geller SH; Patel MT; Melendez J; Oakes BL; Noyes MB; McClean MN
    Biotechnol Bioeng; 2020 Mar; 117(3):886-893. PubMed ID: 31788779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic control of transcription in zebrafish.
    Liu H; Gomez G; Lin S; Lin S; Lin C
    PLoS One; 2012; 7(11):e50738. PubMed ID: 23226369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding CRY2 interactions for optical control of intracellular signaling.
    Duan L; Hope J; Ong Q; Lou HY; Kim N; McCarthy C; Acero V; Lin MZ; Cui B
    Nat Commun; 2017 Sep; 8(1):547. PubMed ID: 28916751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic induction of caspase-8 mediated apoptosis by employing Arabidopsis cryptochrome 2.
    Mo W; Su S; Shang R; Yang L; Zhao X; Wu C; Yang Z; Zhang H; Wu L; Liu Y; He Y; Zhang R; Zuo Z
    Sci Rep; 2023 Dec; 13(1):23067. PubMed ID: 38155283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase.
    Taslimi A; Zoltowski B; Miranda JG; Pathak GP; Hughes RM; Tucker CL
    Nat Chem Biol; 2016 Jun; 12(6):425-30. PubMed ID: 27065233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light Control of the Tet Gene Expression System in Mammalian Cells.
    Yamada M; Suzuki Y; Nagasaki SC; Okuno H; Imayoshi I
    Cell Rep; 2018 Oct; 25(2):487-500.e6. PubMed ID: 30304687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible optogenetic control of kinase activity during differentiation and embryonic development.
    Krishnamurthy VV; Khamo JS; Mei W; Turgeon AJ; Ashraf HM; Mondal P; Patel DB; Risner N; Cho EE; Yang J; Zhang K
    Development; 2016 Nov; 143(21):4085-4094. PubMed ID: 27697903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering.
    Liu Y; Li X; Ma D; Chen Z; Wang JW; Liu H
    EMBO Rep; 2018 Oct; 19(10):. PubMed ID: 30126927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the photoactivation of Arabidopsis CRY2.
    Ma L; Guan Z; Wang Q; Yan X; Wang J; Wang Z; Cao J; Zhang D; Gong X; Yin P
    Nat Plants; 2020 Dec; 6(12):1432-1438. PubMed ID: 33199893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstituting Arabidopsis CRY2 Signaling Pathway in Mammalian Cells Reveals Regulation of Transcription by Direct Binding of CRY2 to DNA.
    Yang L; Mo W; Yu X; Yao N; Zhou Z; Fan X; Zhang L; Piao M; Li S; Yang D; Lin C; Zuo Z
    Cell Rep; 2018 Jul; 24(3):585-593.e4. PubMed ID: 30021157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical control of mammalian endogenous transcription and epigenetic states.
    Konermann S; Brigham MD; Trevino A; Hsu PD; Heidenreich M; Cong L; Platt RJ; Scott DA; Church GM; Zhang F
    Nature; 2013 Aug; 500(7463):472-476. PubMed ID: 23877069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.