BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32651923)

  • 1. All-Optical Miniaturized Co-culture Assay of Voltage-Gated Ca
    Agus V; Janovjak H
    Methods Mol Biol; 2020; 2173():247-260. PubMed ID: 32651923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel All-Optical Assay to Study Use-Dependent Functioning of Voltage-Gated Ion Channels in a Miniaturized Format.
    Agus V; Flak TA; Picardi P; Pizzi S; Rutigliano L; Cainarca S; Redaelli L; Rolland JF; Scarabottolo L
    SLAS Discov; 2021 Mar; 26(3):460-469. PubMed ID: 33334229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetics and Optical Tools in Automated Patch Clamping.
    Boddum K; Skafte-Pedersen P; Rolland JF; Wilson S
    Methods Mol Biol; 2021; 2188():311-330. PubMed ID: 33119859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Control of Ion Channel Function through Optogenetics and Co-Culture.
    Agus V; Picardi P; Redaelli L; Scarabottolo L; Lohmer S
    SLAS Discov; 2018 Jan; 23(1):102-108. PubMed ID: 28783478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic all-optical drug screening on cardiac voltage-gated ion channels.
    Streit J; Kleinlogel S
    Sci Rep; 2018 Jan; 8(1):1153. PubMed ID: 29348631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of State-Dependent Blockers for Voltage-Gated Calcium Channels Using a FLIPR-Based Assay.
    di Silvio A; Rolland J; Stucchi M
    Methods Mol Biol; 2016; 1439():197-206. PubMed ID: 27316997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless Charging Electrochemiluminescence System for Ionic Channel Manipulation in Living Cells.
    Peng K; Liu S; Lv F; Fu X; Hussain S; Zhao H; Liu L; Wang S
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24655-24661. PubMed ID: 32391678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic Control of Ca
    Mager T; Wood PG; Bamberg E
    J Mol Biol; 2017 Mar; 429(6):911-921. PubMed ID: 28192090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graded Ca²⁺/calmodulin-dependent coupling of voltage-gated CaV1.2 channels.
    Dixon RE; Moreno CM; Yuan C; Opitz-Araya X; Binder MD; Navedo MF; Santana LF
    Elife; 2015 Feb; 4():. PubMed ID: 25714924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of optically sensitive liver cells.
    Vajanthri KY; Yadav P; Poddar S; Mahto SK
    Tissue Cell; 2018 Jun; 52():129-134. PubMed ID: 29857822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical electrophysiology for probing function and pharmacology of voltage-gated ion channels.
    Zhang H; Reichert E; Cohen AE
    Elife; 2016 May; 5():. PubMed ID: 27215841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast, repetitive light-activation of CaV3.2 using channelrhodopsin 2.
    Prigge M; Rösler A; Hegemann P
    Channels (Austin); 2010; 4(3):241-7. PubMed ID: 20714225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromechanical Assessment of Optogenetically Modulated Cardiomyocyte Activity.
    Kopton RA; Buchmann C; Moss R; Kohl P; Peyronnet R; Schneider-Warme F
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of high throughput screening assays against three subtypes of Ca(v)3 T-type channels using molecular and pharmacologic approaches.
    Xie X; Van Deusen AL; Vitko I; Babu DA; Davies LA; Huynh N; Cheng H; Yang N; Barrett PQ; Perez-Reyes E
    Assay Drug Dev Technol; 2007 Apr; 5(2):191-203. PubMed ID: 17477828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidimensional screening yields channelrhodopsin variants having improved photocurrent and order-of-magnitude reductions in calcium and proton currents.
    Cho YK; Park D; Yang A; Chen F; Chuong AS; Klapoetke NC; Boyden ES
    J Biol Chem; 2019 Mar; 294(11):3806-3821. PubMed ID: 30610117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.
    Williams JC; Xu J; Lu Z; Klimas A; Chen X; Ambrosi CM; Cohen IS; Entcheva E
    PLoS Comput Biol; 2013; 9(9):e1003220. PubMed ID: 24068903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of L-type Ca
    Sandoval A; Duran P; Gandini MA; Andrade A; Almanza A; Kaja S; Felix R
    Cell Calcium; 2017 Sep; 66():1-9. PubMed ID: 28807144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps.
    Reyer A; Häßler M; Scherzer S; Huang S; Pedersen JT; Al-Rascheid KAS; Bamberg E; Palmgren M; Dreyer I; Nagel G; Hedrich R; Becker D
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20920-20925. PubMed ID: 32788371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2.
    Rorsman NJG; Ta CM; Garnett H; Swietach P; Tammaro P
    Br J Pharmacol; 2018 Jun; 175(11):2028-2045. PubMed ID: 29486056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.