BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 32652224)

  • 1. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds.
    Sarkar N; Bose S
    Acta Biomater; 2020 Sep; 114():407-420. PubMed ID: 32652224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Bhattacharjee A; Jo Y; Bose S
    J Mater Chem B; 2023 May; 11(21):4725-4739. PubMed ID: 37171110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained release of vitamin C from PCL coated TCP induces proliferation and differentiation of osteoblast cells and suppresses osteosarcoma cell growth.
    Bose S; Sarkar N; Vahabzadeh S
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110096. PubMed ID: 31546344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micelle encapsulated curcumin and piperine-laden 3D printed calcium phosphate scaffolds enhance in vitro biological properties.
    Bose S; Sarkar N; Majumdar U
    Colloids Surf B Biointerfaces; 2023 Nov; 231():113563. PubMed ID: 37832173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on
    Tarafder S; Davies NM; Bandyopadhyay A; Bose S
    Biomater Sci; 2013 Dec; 1(12):1250-1259. PubMed ID: 24729867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liposome-Encapsulated Curcumin-Loaded 3D Printed Scaffold for Bone Tissue Engineering.
    Sarkar N; Bose S
    ACS Appl Mater Interfaces; 2019 May; 11(19):17184-17192. PubMed ID: 30924639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis.
    Tarafder S; Bose S
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9955-65. PubMed ID: 24826838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin D
    Vu AA; Bose S
    Ann Biomed Eng; 2020 Mar; 48(3):1025-1033. PubMed ID: 31168676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds.
    Bose S; Tarafder S; Bandyopadhyay A
    Ann Biomed Eng; 2017 Jan; 45(1):261-272. PubMed ID: 27287311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.
    Ye X; Zhang Y; Liu T; Chen Z; Chen W; Wu Z; Wang Y; Li J; Li C; Jiang T; Zhang Y; Wu H; Xu X
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1553-1561. PubMed ID: 35439474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S
    J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds.
    Bose S; Banerjee D; Robertson S; Vahabzadeh S
    Ann Biomed Eng; 2018 Sep; 46(9):1241-1253. PubMed ID: 29728785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ginger and Garlic Extracts Enhance Osteogenesis in 3D Printed Calcium Phosphate Bone Scaffolds with Bimodal Pore Distribution.
    Bose S; Banerjee D; Vu AA
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):12964-12975. PubMed ID: 35263096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity.
    Zhang Y; Wang GJ; Song TT; Murphy PA; Hendrich S
    J Nutr; 1999 May; 129(5):957-62. PubMed ID: 10222386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo evaluation of topical delivery and potential dermal use of soy isoflavones genistein and daidzein.
    Huang ZR; Hung CF; Lin YK; Fang JY
    Int J Pharm; 2008 Nov; 364(1):36-44. PubMed ID: 18761396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.