These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 32652309)
1. Bayer's in silico ADMET platform: a journey of machine learning over the past two decades. Göller AH; Kuhnke L; Montanari F; Bonin A; Schneckener S; Ter Laak A; Wichard J; Lobell M; Hillisch A Drug Discov Today; 2020 Sep; 25(9):1702-1709. PubMed ID: 32652309 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning for In Silico ADMET Prediction. Jia L; Gao H Methods Mol Biol; 2022; 2390():447-460. PubMed ID: 34731482 [TBL] [Abstract][Full Text] [Related]
3. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools. Tao L; Zhang P; Qin C; Chen SY; Zhang C; Chen Z; Zhu F; Yang SY; Wei YQ; Chen YZ Adv Drug Deliv Rev; 2015 Jun; 86():83-100. PubMed ID: 26037068 [TBL] [Abstract][Full Text] [Related]
4. Recent uses of topological indices in the development of in silico ADMET models. Votano JR Curr Opin Drug Discov Devel; 2005 Jan; 8(1):32-7. PubMed ID: 15679169 [TBL] [Abstract][Full Text] [Related]
5. A Recent Appraisal of Artificial Intelligence and In Silico ADMET Prediction in the Early Stages of Drug Discovery. Kumar A; Kini SG; Rathi E Mini Rev Med Chem; 2021; 21(18):2788-2800. PubMed ID: 33797376 [TBL] [Abstract][Full Text] [Related]
6. The application of in silico drug-likeness predictions in pharmaceutical research. Tian S; Wang J; Li Y; Li D; Xu L; Hou T Adv Drug Deliv Rev; 2015 Jun; 86():2-10. PubMed ID: 25666163 [TBL] [Abstract][Full Text] [Related]
7. ADMET modeling approaches in drug discovery. Ferreira LLG; Andricopulo AD Drug Discov Today; 2019 May; 24(5):1157-1165. PubMed ID: 30890362 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning Applied to the Modeling of Pharmacological and ADMET Endpoints. Göller AH; Kuhnke L; Ter Laak A; Meier K; Hillisch A Methods Mol Biol; 2022; 2390():61-101. PubMed ID: 34731464 [TBL] [Abstract][Full Text] [Related]
9. Promises of Machine Learning Approaches in Prediction of Absorption of Compounds. Kumar R; Sharma A; Siddiqui MH; Tiwari RK Mini Rev Med Chem; 2018; 18(3):196-207. PubMed ID: 28302041 [TBL] [Abstract][Full Text] [Related]
10. Informing the Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity Profiles. Sanders JM; Beshore DC; Culberson JC; Fells JI; Imbriglio JE; Gunaydin H; Haidle AM; Labroli M; Mattioni BE; Sciammetta N; Shipe WD; Sheridan RP; Suen LM; Verras A; Walji A; Joshi EM; Bueters T J Med Chem; 2017 Aug; 60(16):6771-6780. PubMed ID: 28418656 [TBL] [Abstract][Full Text] [Related]
11. Recent advances in physicochemical and ADMET profiling in drug discovery. Wang J; Skolnik S Chem Biodivers; 2009 Nov; 6(11):1887-99. PubMed ID: 19937823 [TBL] [Abstract][Full Text] [Related]
12. High-throughput and in silico techniques in drug metabolism and pharmacokinetics. van de Waterbeemd H Curr Opin Drug Discov Devel; 2002 Jan; 5(1):33-43. PubMed ID: 11865671 [TBL] [Abstract][Full Text] [Related]
13. From drug target to leads--sketching a physicochemical pathway for lead molecule design in silico. Shaikh SA; Jain T; Sandhu G; Latha N; Jayaram B Curr Pharm Des; 2007; 13(34):3454-70. PubMed ID: 18220783 [TBL] [Abstract][Full Text] [Related]
14. Improving compound quality through in vitro and in silico physicochemical profiling. van de Waterbeemd H Chem Biodivers; 2009 Nov; 6(11):1760-6. PubMed ID: 19937820 [TBL] [Abstract][Full Text] [Related]
15. Multi-Task ADME/PK prediction at industrial scale: leveraging large and diverse experimental datasets. Walter M; Borghardt JM; Humbeck L; Skalic M Mol Inform; 2024 Oct; 43(10):e202400079. PubMed ID: 38973777 [TBL] [Abstract][Full Text] [Related]
16. Pharmacokinetic properties and in silico ADME modeling in drug discovery. Honório KM; Moda TL; Andricopulo AD Med Chem; 2013 Mar; 9(2):163-76. PubMed ID: 23016542 [TBL] [Abstract][Full Text] [Related]
17. Model-based Target Pharmacology Assessment (mTPA): An Approach Using PBPK/PD Modeling and Machine Learning to Design Medicinal Chemistry and DMPK Strategies in Early Drug Discovery. Chen EP; Bondi RW; Michalski PJ J Med Chem; 2021 Mar; 64(6):3185-3196. PubMed ID: 33719432 [TBL] [Abstract][Full Text] [Related]
18. Role of ADME characteristics in drug discovery and their in silico evaluation: in silico screening of chemicals for their metabolic stability. Gombar VK; Silver IS; Zhao Z Curr Top Med Chem; 2003; 3(11):1205-25. PubMed ID: 12769701 [TBL] [Abstract][Full Text] [Related]
19. In vitro methods in the prediction of kinetics of drugs: focus on drug metabolism. Raunio H; Taavitsainen P; Honkakoski P; Juvonen R; Pelkonen O Altern Lab Anim; 2004 Oct; 32(4):425-30. PubMed ID: 15651928 [TBL] [Abstract][Full Text] [Related]
20. Predicting drug metabolism and pharmacokinetics features of in-house compounds by a hybrid machine-learning model. Sasahara K; Shibata M; Sasabe H; Suzuki T; Takeuchi K; Umehara K; Kashiyama E Drug Metab Pharmacokinet; 2021 Aug; 39():100395. PubMed ID: 33991751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]