BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32652452)

  • 1. Design and optimization of bioreactor to boost carbon dioxide assimilation in RuBisCo-equipped Escherichia coli.
    Tan SI; Ng IS
    Bioresour Technol; 2020 Oct; 314():123785. PubMed ID: 32652452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) Is Essential for Growth of the Methanotroph Methylococcus capsulatus Strain Bath.
    Henard CA; Wu C; Xiong W; Henard JM; Davidheiser-Kroll B; Orata FD; Guarnieri MT
    Appl Environ Microbiol; 2021 Aug; 87(18):e0088121. PubMed ID: 34288705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling.
    Zhuang ZY; Li SY
    Bioresour Technol; 2013 Dec; 150():79-88. PubMed ID: 24152790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exceeding the theoretical fermentation yield in mixotrophic Rubisco-based engineered Escherichia coli.
    Tseng IT; Chen YL; Chen CH; Shen ZX; Yang CH; Li SY
    Metab Eng; 2018 May; 47():445-452. PubMed ID: 29704653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli.
    Yang CH; Liu EJ; Chen YL; Ou-Yang FY; Li SY
    Microb Cell Fact; 2016 Aug; 15(1):133. PubMed ID: 27485110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Catalytic Role of RuBisCO for
    Pang JJ; Shin JS; Li SY
    Front Bioeng Biotechnol; 2020; 8():543807. PubMed ID: 33330409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering RuBisCO-based shunt for improved cadaverine production in Escherichia coli.
    Feng J; Han Y; Xu S; Liao Y; Wang Y; Xu S; Li H; Wang X; Chen K
    Bioresour Technol; 2024 Apr; 398():130529. PubMed ID: 38437969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Small Decrease in Rubisco Content by Individual Suppression of RBCS Genes Leads to Improvement of Photosynthesis and Greater Biomass Production in Rice Under Conditions of Elevated CO2.
    Kanno K; Suzuki Y; Makino A
    Plant Cell Physiol; 2017 Mar; 58(3):635-642. PubMed ID: 28158810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential improvement of photosynthetic CO
    Galmés J; Capó-Bauçà S; Niinemets Ü; Iñiguez C
    Curr Opin Plant Biol; 2019 Jun; 49():60-67. PubMed ID: 31234057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rubisco Catalytic Properties and Temperature Response in Crops.
    Hermida-Carrera C; Kapralov MV; Galmés J
    Plant Physiol; 2016 Aug; 171(4):2549-61. PubMed ID: 27329223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductions of Rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces Rubisco carbamylation and leaf photosynthesis.
    von Caemmerer S; Hendrickson L; Quinn V; Vella N; Millgate AG; Furbank RT
    Plant Physiol; 2005 Feb; 137(2):747-55. PubMed ID: 15665240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.
    Sudo E; Suzuki Y; Makino A
    Plant Cell Physiol; 2014 Nov; 55(11):1905-11. PubMed ID: 25231963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction.
    Ruuska SA; Badger MR; Andrews TJ; von Caemmerer S
    J Exp Bot; 2000 Feb; 51 Spec No():357-68. PubMed ID: 10938843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth.
    Dellero Y; Lamothe-Sibold M; Jossier M; Hodges M
    Plant J; 2015 Sep; 83(6):1005-18. PubMed ID: 26216646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria.
    Tsai YC; Lapina MC; Bhushan S; Mueller-Cajar O
    Nat Commun; 2015 Nov; 6():8883. PubMed ID: 26567524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenesis and Metabolic Maintenance of Rubisco.
    Bracher A; Whitney SM; Hartl FU; Hayer-Hartl M
    Annu Rev Plant Biol; 2017 Apr; 68():29-60. PubMed ID: 28125284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.
    Li YH; Ou-Yang FY; Yang CH; Li SY
    Bioresour Technol; 2015; 187():189-197. PubMed ID: 25846189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen response of leaf CO
    Miyazawa SI; Tobita H; Ujino-Ihara T; Suzuki Y
    J Plant Res; 2020 Mar; 133(2):205-215. PubMed ID: 32048093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedforward non-Michaelis-Menten mechanism for CO(2) uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation.
    Igamberdiev AU; Roussel MR
    Biosystems; 2012 Mar; 107(3):158-66. PubMed ID: 22154946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.