BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32652725)

  • 1. A time-efficient method to determine parameters for measurement of short-interval intracortical inhibition for quadriceps.
    Ruas CV; Taylor JL; Nosaka K; Haff GG; Latella C
    Eur J Neurosci; 2020 Dec; 52(12):4751-4761. PubMed ID: 32652725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of paired-pulse stimulus parameters on the two phases of short interval intracortical inhibition in the quadriceps muscle group.
    Krishnan C
    Restor Neurol Neurosci; 2019; 37(4):363-374. PubMed ID: 31306142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of postexercise blood flow occlusion on quadriceps responses to transcranial magnetic stimulation.
    Latella C; Pinto MD; Nuzzo JL; Taylor JL
    J Appl Physiol (1985); 2021 May; 130(5):1326-1336. PubMed ID: 33571056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris.
    Temesi J; Gruet M; Rupp T; Verges S; Millet GY
    J Neuroeng Rehabil; 2014 Mar; 11():40. PubMed ID: 24655366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-interval intracortical inhibition in knee extensors during locomotor cycling.
    Sidhu SK; Cresswell AG; Carroll TJ
    Acta Physiol (Oxf); 2013 Jan; 207(1):194-201. PubMed ID: 23025802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimal protocol for measurement of corticospinal excitability, short intracortical inhibition and intracortical facilitation in the rectus femoris.
    Brownstein CG; Ansdell P; Škarabot J; Howatson G; Goodall S; Thomas K
    J Neurol Sci; 2018 Nov; 394():45-56. PubMed ID: 30216757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the effects of muscle contraction and conditioning stimulus intensity on short-interval intracortical inhibition.
    Hendy AM; Ekblom MM; Latella C; Teo WP
    Eur J Neurosci; 2019 Oct; 50(7):3133-3140. PubMed ID: 31199534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex.
    Ortu E; Deriu F; Suppa A; Tolu E; Rothwell JC
    J Physiol; 2008 Nov; 586(21):5147-59. PubMed ID: 18787036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue-induced changes in short-interval intracortical inhibition and the silent period with stimulus intensities evoking maximal versus submaximal responses.
    Brownstein CG; Espeit L; Royer N; Lapole T; Millet GY
    J Appl Physiol (1985); 2020 Aug; 129(2):205-217. PubMed ID: 32584668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of transcranial magnetic stimulation-evoked responses on knee extensor muscles during cycling.
    Zhang J; McClean ZJ; Khaledi N; Morgan SJ; Millet GY; Aboodarda SJ
    Exp Brain Res; 2024 Jul; 242(7):1681-1695. PubMed ID: 38806709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interference of short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF).
    Peurala SH; Müller-Dahlhaus JF; Arai N; Ziemann U
    Clin Neurophysiol; 2008 Oct; 119(10):2291-7. PubMed ID: 18723394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of single- and paired-pulse transcranial magnetic stimulation for the assessment of knee extensor muscle function.
    Temesi J; Ly SN; Millet GY
    J Neurol Sci; 2017 Apr; 375():442-449. PubMed ID: 28320184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of single and paired-pulse transcranial magnetic stimulation in the vastus lateralis muscle.
    O'Leary TJ; Morris MG; Collett J; Howells K
    Muscle Nerve; 2015 Oct; 52(4):605-15. PubMed ID: 25620286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude.
    Miyaguchi S; Kojima S; Sasaki R; Tamaki H; Onishi H
    Neuroreport; 2017 Dec; 28(18):1202-1207. PubMed ID: 29064955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-interval intracortical inhibition to the biceps brachii is present during arm cycling but is not different than a position- and intensity-matched tonic contraction.
    Alcock LR; Spence AJ; Lockyer EJ; Button DC; Power KE
    Exp Brain Res; 2019 Sep; 237(9):2145-2154. PubMed ID: 31203402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability of corticospinal excitability and intracortical inhibition in biceps femoris during different contraction modes.
    Presland JD; Tofari PJ; Timmins RG; Kidgell DJ; Opar DA
    Eur J Neurosci; 2023 Jan; 57(1):91-105. PubMed ID: 36382424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a supraspinal contribution to the human quadriceps long-latency stretch reflex.
    Mrachacz-Kersting N; Grey MJ; Sinkjaer T
    Exp Brain Res; 2006 Jan; 168(4):529-40. PubMed ID: 16240144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-session reliability of short-interval intracortical inhibition measured by threshold tracking TMS.
    Matamala JM; Howells J; Dharmadasa T; Trinh T; Ma Y; Lera L; Vucic S; Burke D; Kiernan MC
    Neurosci Lett; 2018 May; 674():18-23. PubMed ID: 29501687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracortical inhibition in the human trigeminal motor system.
    Jaberzadeh S; Pearce SL; Miles TS; Türker KS; Nordstrom MA
    Clin Neurophysiol; 2007 Aug; 118(8):1785-93. PubMed ID: 17574911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different modulation of the cortical silent period by two phases of short interval intracortical inhibition.
    Kang SY; Shin HW; Sohn YH
    Yonsei Med J; 2007 Oct; 48(5):795-801. PubMed ID: 17963336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.