These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32652789)

  • 1. CAFRI-Rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice.
    Hong WJ; Kim YJ; Kim EJ; Kumar Nalini Chandran A; Moon S; Gho YS; Yoou MH; Kim ST; Jung KH
    Plant J; 2020 Oct; 104(2):532-545. PubMed ID: 32652789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.
    Yin X; Biswal AK; Dionora J; Perdigon KM; Balahadia CP; Mazumdar S; Chater C; Lin HC; Coe RA; Kretzschmar T; Gray JE; Quick PW; Bandyopadhyay A
    Plant Cell Rep; 2017 May; 36(5):745-757. PubMed ID: 28349358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice.
    Endo M; Mikami M; Toki S
    Plant Cell Physiol; 2015 Jan; 56(1):41-7. PubMed ID: 25392068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.
    Minkenberg B; Xie K; Yang Y
    Plant J; 2017 Feb; 89(3):636-648. PubMed ID: 27747971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 Guided Mutagenesis of
    Usman B; Zhao N; Nawaz G; Qin B; Liu F; Liu Y; Li R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of CCT family knockout mutants identifies four genes involved in regulating heading date in rice.
    Zhang J; Fan X; Hu Y; Zhou X; He Q; Liang L; Xing Y
    J Integr Plant Biol; 2021 May; 63(5):913-923. PubMed ID: 32889758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy.
    Jung KH; Dardick C; Bartley LE; Cao P; Phetsom J; Canlas P; Seo YS; Shultz M; Ouyang S; Yuan Q; Frank BC; Ly E; Zheng L; Jia Y; Hsia AP; An K; Chou HH; Rocke D; Lee GC; Schnable PS; An G; Buell CR; Ronald PC
    PLoS One; 2008 Oct; 3(10):e3337. PubMed ID: 18836531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex CRISPR Mutagenesis of the Serine/Arginine-Rich (SR) Gene Family in Rice.
    Butt H; Piatek A; Li L; S N Reddy A; M Mahfouz M
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31394891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome Analysis of Triple Mutant for OsMADS62, OsMADS63, and OsMADS68 Reveals the Downstream Regulatory Mechanism for Pollen Germination in Rice (
    Kim EJ; Hong WJ; Kim YJ; Jung KH
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of targeted mutant rice using a CRISPR-Cpf1 system.
    Xu R; Qin R; Li H; Li D; Li L; Wei P; Yang J
    Plant Biotechnol J; 2017 Jun; 15(6):713-717. PubMed ID: 27875019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-based assessment of genomic structure in the conserved SQUAMOSA promoter-binding-like gene clusters in rice.
    Jiang M; He Y; Chen X; Zhang X; Guo Y; Yang S; Huang J; Traw MB
    Plant J; 2020 Dec; 104(5):1301-1314. PubMed ID: 32996244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Based Assessment of Gene Specialization in the Gibberellin Metabolic Pathway in Rice.
    Chen X; Tian X; Xue L; Zhang X; Yang S; Traw MB; Huang J
    Plant Physiol; 2019 Aug; 180(4):2091-2105. PubMed ID: 31160507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis.
    Chepyshko H; Lai CP; Huang LM; Liu JH; Shaw JF
    BMC Genomics; 2012 Jul; 13():309. PubMed ID: 22793791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis and identification of genes related to expansin gene family in indica rice.
    Hemalatha N; Rajesh MK; Narayanan NK
    Int J Bioinform Res Appl; 2011; 7(2):162-7. PubMed ID: 21576074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922.
    Wang F; Wang C; Liu P; Lei C; Hao W; Gao Y; Liu YG; Zhao K
    PLoS One; 2016; 11(4):e0154027. PubMed ID: 27116122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice.
    Liu D; Yu Z; Zhang G; Yin W; Li L; Niu M; Meng W; Zhang X; Dong N; Liu J; Yang Y; Wang S; Chu C; Tong H
    Plant Physiol; 2021 Dec; 187(4):2563-2576. PubMed ID: 34618079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research.
    Liu D; Hu R; Palla KJ; Tuskan GA; Yang X
    Curr Opin Plant Biol; 2016 Apr; 30():70-7. PubMed ID: 26896588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice.
    Mikami M; Toki S; Endo M
    Plant Cell Rep; 2015 Oct; 34(10):1807-15. PubMed ID: 26134856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.