BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32653267)

  • 21. Automated estimation of relative fundamental frequency.
    Lien YA; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2136-9. PubMed ID: 24110143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Individual Monitoring of Vocal Effort With Relative Fundamental Frequency: Relationships With Aerodynamics and Listener Perception.
    Lien YA; Michener CM; Eadie TL; Stepp CE
    J Speech Lang Hear Res; 2015 Jun; 58(3):566-75. PubMed ID: 25675090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in Relative Fundamental Frequency Under Increased Cognitive Load in Individuals With Healthy Voices.
    Dahl KL; Stepp CE
    J Speech Lang Hear Res; 2021 Apr; 64(4):1189-1196. PubMed ID: 33788635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Relationship Between Relative Fundamental Frequency and a Kinematic Estimate of Laryngeal Stiffness in Healthy Adults.
    McKenna VS; Heller Murray ES; Lien YS; Stepp CE
    J Speech Lang Hear Res; 2016 Dec; 59(6):1283-1294. PubMed ID: 27936279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effectiveness of Low-Level Light Therapy in Attenuating Vocal Fatigue.
    Kagan LS; Heaton JT
    J Voice; 2017 May; 31(3):384.e15-384.e23. PubMed ID: 27839705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of vocal hyperfunction on relative fundamental frequency during voicing offset and onset.
    Stepp CE; Hillman RE; Heaton JT
    J Speech Lang Hear Res; 2010 Oct; 53(5):1220-6. PubMed ID: 20643798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consistency of voice frequency and perturbation measures in children using cepstral analyses: a movement toward increased recording stability.
    Diercks GR; Ojha S; Infusino S; Maurer R; Hartnick CJ
    JAMA Otolaryngol Head Neck Surg; 2013 Aug; 139(8):811-6. PubMed ID: 23949356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of contact microphone and electroglottograph for the measurement of vocal fundamental frequency.
    Askenfelt A; Gauffin J; Sundberg J; Kitzing P
    J Speech Hear Res; 1980 Jun; 23(2):258-73. PubMed ID: 7003261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ambulatory monitoring of disordered voices.
    Hillman RE; Heaton JT; Masaki A; Zeitels SM; Cheyne HA
    Ann Otol Rhinol Laryngol; 2006 Nov; 115(11):795-801. PubMed ID: 17165660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wearable Neck Surface Accelerometers for Occupational Vocal Health Monitoring: Instrument and Analysis Validation Study.
    Lei Z; Martignetti L; Ridgway C; Peacock S; Sakata JT; Li-Jessen NYK
    JMIR Form Res; 2022 Aug; 6(8):e39789. PubMed ID: 35930317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform.
    Mehta DD; Zañartu M; Feng SW; Cheyne HA; Hillman RE
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3090-6. PubMed ID: 22875236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The difference between first and second harmonic amplitudes correlates between glottal airflow and neck-surface accelerometer signals during phonation.
    Mehta DD; Espinoza VM; Van Stan JH; Zañartu M; Hillman RE
    J Acoust Soc Am; 2019 May; 145(5):EL386. PubMed ID: 31153299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relative fundamental frequency during vocal onset and offset in older speakers with and without Parkinson's disease.
    Stepp CE
    J Acoust Soc Am; 2013 Mar; 133(3):1637-43. PubMed ID: 23464033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Age and Parkinson's Disease on the Relationship between Vocal Fold Abductory Kinematics and Relative Fundamental Frequency.
    Vojtech JM; Stepp CE
    J Voice; 2022 Apr; ():. PubMed ID: 35393167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relative Fundamental Frequency in Individuals with Globus Syndrome and Muscle Tension Dysphagia.
    Buckley DP; Vojtech JM; Stepp CE
    J Voice; 2024 May; 38(3):612-618. PubMed ID: 34823980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined Use of Standard and Throat Microphones for Measurement of Acoustic Voice Parameters and Voice Categorization.
    Uloza V; Padervinskis E; Uloziene I; Saferis V; Verikas A
    J Voice; 2015 Sep; 29(5):552-9. PubMed ID: 25795349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of Face Masks on Speech Acoustics and Vocal Effort in Healthcare Professionals.
    McKenna VS; Kendall CL; Patel TH; Howell RJ; Gustin RL
    Laryngoscope; 2022 Feb; 132(2):391-397. PubMed ID: 34287933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of Subglottal Pressure From Neck Surface Vibration in Patients With Voice Disorders.
    Marks KL; Lin JZ; Burns JA; Hron TA; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2020 Jul; 63(7):2202-2218. PubMed ID: 32610028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relative Fundamental Frequency: Only for Hyperfunctional Voices? A Pilot Study.
    Ferrán S; Rodríguez-Zanetti C; Garaycochea O; Terrasa D; Prieto-Matos C; Del Río B; Alzuguren MP; Fernández S
    Bioengineering (Basel); 2024 May; 11(5):. PubMed ID: 38790342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reliable jitter and shimmer measurements in voice clinics: the relevance of vowel, gender, vocal intensity, and fundamental frequency effects in a typical clinical task.
    Brockmann M; Drinnan MJ; Storck C; Carding PN
    J Voice; 2011 Jan; 25(1):44-53. PubMed ID: 20381308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.