These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32653267)

  • 41. Improved subglottal pressure estimation from neck-surface vibration in healthy speakers producing non-modal phonation.
    Lin JZ; Espinoza VM; Marks KL; Zañartu M; Mehta DD
    IEEE J Sel Top Signal Process; 2020 Feb; 14(2):449-460. PubMed ID: 34079612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of segment selection on acoustic analysis.
    Choi SH; Lee J; Sprecher AJ; Jiang JJ
    J Voice; 2012 Jan; 26(1):1-7. PubMed ID: 21889300
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vocal Effects in Military Students Submitted to an Intense Recruit Training: A Pilot Study.
    Nascimento CL; Constantini AC; Mourão LF
    J Voice; 2016 Jan; 30(1):61-9. PubMed ID: 26028370
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison of a child's fundamental frequencies in structured elicited vocalizations versus unstructured natural vocalizations: a case study.
    Hunter EJ
    Int J Pediatr Otorhinolaryngol; 2009 Apr; 73(4):561-71. PubMed ID: 19185926
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimating Subglottal Pressure From Neck-Surface Acceleration During Normal Voice Production.
    Fryd AS; Van Stan JH; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2016 Dec; 59(6):1335-1345. PubMed ID: 27959974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Classification of voice quality using neck-surface acceleration: Comparison with glottal flow and radiated sound.
    Włodarczak M; Ludusan B; Sundberg J; Heldner M
    J Voice; 2022 Aug; ():. PubMed ID: 36028369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Accuracy of the quantities measured by four vocal dosimeters and its uncertainty.
    Bottalico P; Ipsaro Passione I; Astolfi A; Carullo A; Hunter EJ
    J Acoust Soc Am; 2018 Mar; 143(3):1591. PubMed ID: 29604673
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison of high precision F0 extraction algorithms for sustained vowels.
    Parsa V; Jamieson DG
    J Speech Lang Hear Res; 1999 Feb; 42(1):112-26. PubMed ID: 10025548
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Natural Voice Use in Patients With Voice Disorders and Vocally Healthy Speakers Based on 2 Days Voice Accumulator Information From a Database.
    Södersten M; Salomão GL; McAllister A; Ternström S
    J Voice; 2015 Sep; 29(5):646.e1-9. PubMed ID: 26073776
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Feasibility of a Neck-Surface Accelerometer for Estimating the Amount of Acoustic Output During Phonation Regardless of the Difference in the Mouth Configuration.
    Umatani M; Ogawa M; Iwahashi T; Hosokawa K; Kato C; Inohara H
    J Voice; 2022 May; 36(3):297-308. PubMed ID: 32654866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of Acoustic Analyses of Voice in Nonoptimized Conditions.
    van der Woerd B; Wu M; Parsa V; Doyle PC; Fung K
    J Speech Lang Hear Res; 2020 Dec; 63(12):3991-3999. PubMed ID: 33186510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of phonetic context on relative fundamental frequency.
    Lien YA; Gattuccio CI; Stepp CE
    J Speech Lang Hear Res; 2014 Aug; 57(4):1259-67. PubMed ID: 24686466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Four-day Follow-up Study on the Self-reported Voice Condition and Noise Condition of Teachers: Relationship Between Vocal Parameters and Classroom Acoustics.
    Cantor Cutiva LC; Puglisi GE; Astolfi A; Carullo A
    J Voice; 2017 Jan; 31(1):120.e1-120.e8. PubMed ID: 27427163
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Comparison of Cepstral Peak Prominence Measures From Two Acoustic Analysis Programs.
    Watts CR; Awan SN; Maryn Y
    J Voice; 2017 May; 31(3):387.e1-387.e10. PubMed ID: 27751661
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physics of phonation offset: Towards understanding relative fundamental frequency observations.
    Serry MA; Stepp CE; Peterson SD
    J Acoust Soc Am; 2021 May; 149(5):3654. PubMed ID: 34241131
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acoustic Predictors of Gender Attribution, Masculinity-Femininity, and Vocal Naturalness Ratings Amongst Transgender and Cisgender Speakers.
    Hardy TLD; Rieger JM; Wells K; Boliek CA
    J Voice; 2020 Mar; 34(2):300.e11-300.e26. PubMed ID: 30503396
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationship Between Acoustic Measurements and Self-evaluation in Patients With Voice Disorders.
    Lopes LW; da Silva JD; Simões LB; Evangelista DDS; Silva POC; Almeida AA; de Lima-Silva MFB
    J Voice; 2017 Jan; 31(1):119.e1-119.e10. PubMed ID: 27049448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vocal tremor analysis with the Vocal Demodulator.
    Winholtz WS; Ramig LO
    J Speech Hear Res; 1992 Jun; 35(3):562-73. PubMed ID: 1608247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms.
    Mesallam TA; Farahat M; Malki KH; Alsulaiman M; Ali Z; Al-Nasheri A; Muhammad G
    J Healthc Eng; 2017; 2017():8783751. PubMed ID: 29201333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acoustic correlates of vocal quality.
    Eskenazi L; Childers DG; Hicks DM
    J Speech Hear Res; 1990 Jun; 33(2):298-306. PubMed ID: 2359270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.