These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32653778)

  • 21. Integrative analysis of gene expression associated with epilepsy in human epilepsy and animal models.
    Chen H; Xu G; Du H; Yi M; Li C
    Mol Med Rep; 2016 Jun; 13(6):4920-6. PubMed ID: 27081788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk.
    Gupta A; Mohanty P; Bhatnagar S
    J Recept Signal Transduct Res; 2015 Apr; 35(2):149-64. PubMed ID: 25055025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of novel gene and pathway targets for human epilepsy treatment.
    Jin Y; Zhao C; Chen L; Liu X; Pan S; Ju D; Ma J; Li J; Wei B
    Biol Res; 2016 Jan; 49():3. PubMed ID: 26742644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-dimensional data integration algorithm based on random walk with restart.
    Wen Y; Song X; Yan B; Yang X; Wu L; Leng D; He S; Bo X
    BMC Bioinformatics; 2021 Feb; 22(1):97. PubMed ID: 33639858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Random walk with restart on multiplex and heterogeneous biological networks.
    Valdeolivas A; Tichit L; Navarro C; Perrin S; Odelin G; Levy N; Cau P; Remy E; Baudot A
    Bioinformatics; 2019 Feb; 35(3):497-505. PubMed ID: 30020411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prioritization of candidate disease genes by combining topological similarity and semantic similarity.
    Liu B; Jin M; Zeng P
    J Biomed Inform; 2015 Oct; 57():1-5. PubMed ID: 26173039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Important Role of Perituberal Tissue in Epileptic Patients with Tuberous Sclerosis Complex by the Transcriptome Analysis.
    Li S; Shao H; Chang L
    Biomed Res Int; 2020; 2020():4980609. PubMed ID: 33123575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of neuropathic pain-associated genes and pathways via random walk with restart algorithm.
    Yi D; Wang K; Zhu B; Li S; Liu X
    J Neurosurg Sci; 2021 Aug; 65(4):414-420. PubMed ID: 32536116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AligNet: alignment of protein-protein interaction networks.
    Alcalá A; Alberich R; Llabrés M; Rosselló F; Valiente G
    BMC Bioinformatics; 2020 Nov; 21(Suppl 6):265. PubMed ID: 33203353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrative methodology based on protein-protein interaction networks for identification and functional annotation of disease-relevant genes applied to channelopathies.
    Marín M; Esteban FJ; Ramírez-Rodrigo H; Ros E; Sáez-Lara MJ
    BMC Bioinformatics; 2019 Nov; 20(1):565. PubMed ID: 31718537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of key genes in colorectal cancer using random walk with restart.
    Cui X; Shen K; Xie Z; Liu T; Zhang H
    Mol Med Rep; 2017 Feb; 15(2):867-872. PubMed ID: 28000901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.
    Le DH; Verbeke L; Son LH; Chu DT; Pham VH
    BMC Bioinformatics; 2017 Nov; 18(1):479. PubMed ID: 29137601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms.
    Chen L; Liu T; Zhao X
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2228-2240. PubMed ID: 29247833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of hub genes and pathways associated with retinoblastoma based on co-expression network analysis.
    Wang QL; Chen X; Zhang MH; Shen QH; Qin ZM
    Genet Mol Res; 2015 Dec; 14(4):16151-61. PubMed ID: 26662407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Network-based ranking methods for prediction of novel disease associated microRNAs.
    Le DH
    Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of Novel Drugs and Diseases for Hepatocellular Carcinoma Based on Multi-Source Simulated Annealing Based Random Walk.
    Ibrahim SJA; Thangamani M
    J Med Syst; 2018 Sep; 42(10):188. PubMed ID: 30173379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network.
    Liu H; Zhang W; Nie L; Ding X; Luo J; Zou L
    BMC Bioinformatics; 2019 Dec; 20(1):645. PubMed ID: 31818267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.