These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32653783)
1. A triple-chamber microbial fuel cell enabled to synchronously recover iron and sulfur elements from sulfide tailings. Zheng Y; Wang L; Zhu Y; Li X; Ren Y J Hazard Mater; 2021 Jan; 401():123307. PubMed ID: 32653783 [TBL] [Abstract][Full Text] [Related]
2. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings. Li Y; Sun Q; Zhan J; Yang Y; Wang D J Environ Manage; 2016 Jul; 177():153-60. PubMed ID: 27093236 [TBL] [Abstract][Full Text] [Related]
3. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide. Li XT; Huang ZS; Huang Y; Jiang Z; Liang ZL; Yin HQ; Zhang GJ; Jia Y; Deng Y; Liu SJ; Jiang CY Sci Total Environ; 2023 Apr; 869():161752. PubMed ID: 36690115 [TBL] [Abstract][Full Text] [Related]
4. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Ye M; Li G; Yan P; Ren J; Zheng L; Han D; Sun S; Huang S; Zhong Y Chemosphere; 2017 Oct; 185():1189-1196. PubMed ID: 28772358 [TBL] [Abstract][Full Text] [Related]
5. Bioleaching of copper sulfide minerals assisted by microbial fuel cells. Huang T; Wei X; Zhang S Bioresour Technol; 2019 Sep; 288():121561. PubMed ID: 31152952 [TBL] [Abstract][Full Text] [Related]
6. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Sun M; Mu ZX; Chen YP; Sheng GP; Liu XW; Chen YZ; Zhao Y; Wang HL; Yu HQ; Wei L; Ma F Environ Sci Technol; 2009 May; 43(9):3372-7. PubMed ID: 19534160 [TBL] [Abstract][Full Text] [Related]
7. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process. Sun M; Song W; Zhai LF; Cui YZ J Hazard Mater; 2013 Dec; 263 Pt 2():643-9. PubMed ID: 24220197 [TBL] [Abstract][Full Text] [Related]
8. A new strategy on biomining of low grade base-metal sulfide tailings. Liao X; Sun S; Zhou S; Ye M; Liang J; Huang J; Guan Z; Li S Bioresour Technol; 2019 Dec; 294():122187. PubMed ID: 31577980 [TBL] [Abstract][Full Text] [Related]
9. Enhanced "contact mechanism" for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus. Huang Z; Feng S; Tong Y; Yang H J Environ Manage; 2019 Jul; 242():11-21. PubMed ID: 31026798 [TBL] [Abstract][Full Text] [Related]
10. Bioleaching of tellurium from mine tailings by indigenous Acidithiobacillus ferrooxidans. Zhan Y; Shen X; Chen M; Yang K; Xie H Lett Appl Microbiol; 2022 Nov; 75(5):1076-1083. PubMed ID: 34586632 [TBL] [Abstract][Full Text] [Related]
11. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A. Vera M; Schippers A; Sand W Appl Microbiol Biotechnol; 2013 Sep; 97(17):7529-41. PubMed ID: 23720034 [TBL] [Abstract][Full Text] [Related]
12. Metals recovery from polymetallic sulfide tailings by bioleaching functional bacteria isolated with the improved 9K agar: Comparison between one-step and two-step processes. Hu M; Zhao X; Gu J; Qian L; Wang Z; Nie Y; Han X; An L; Jiang H Environ Res; 2024 Jan; 240(Pt 1):117511. PubMed ID: 37890822 [TBL] [Abstract][Full Text] [Related]
13. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A. Vera M; Schippers A; Hedrich S; Sand W Appl Microbiol Biotechnol; 2022 Nov; 106(21):6933-6952. PubMed ID: 36194263 [TBL] [Abstract][Full Text] [Related]
14. Enhanced performance of microbial fuel cells with enriched ferrous iron oxidation microflora at room temperatures. Zhang G; Wang X; Jiao Y; Chen Q; Lee DJ Bioresour Technol; 2021 Jul; 331():125025. PubMed ID: 33812745 [TBL] [Abstract][Full Text] [Related]
15. Bioleaching of ultramafic tailings by acidithiobacillus spp. for CO2 sequestration. Power IM; Dipple GM; Southam G Environ Sci Technol; 2010 Jan; 44(1):456-62. PubMed ID: 19950896 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms. Jones S; Santini JM Essays Biochem; 2023 Aug; 67(4):685-699. PubMed ID: 37449416 [TBL] [Abstract][Full Text] [Related]
17. Recovery iron from cyanide tailings by anaerobic roasting-persulfate leaching: effect of roasting temperature. Dong P; Song Y; Wu L; Bao J; Yin N; Zhu R; Li Y Environ Sci Pollut Res Int; 2023 Apr; 30(17):50537-50548. PubMed ID: 36795215 [TBL] [Abstract][Full Text] [Related]
18. Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: Effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment. Pathak A; Srichandan H; Kim DJ J Environ Manage; 2019 Jul; 242():372-383. PubMed ID: 31059950 [TBL] [Abstract][Full Text] [Related]
19. Leachability of metals from waste incineration residues by iron- and sulfur-oxidizing bacteria. Kremser K; Thallner S; Strbik D; Spiess S; Kucera J; Vaculovic T; Vsiansky D; Haberbauer M; Mandl M; Guebitz GM J Environ Manage; 2021 Feb; 280():111734. PubMed ID: 33288317 [TBL] [Abstract][Full Text] [Related]
20. The dynamics of two iron-oxidizing Acidithiobacillus strains in industrial copper sulfide heap-leaching. Escuti C; Véliz R; Acosta M; Echeverría-Vega A; Araya G; Ayma D; Demergasso C Res Microbiol; 2024; 175(1-2):104168. PubMed ID: 37995889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]