BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 32653809)

  • 41. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?
    Yamamoto S; Shiraishi S; Suzuki S
    Lett Appl Microbiol; 2015 Apr; 60(4):379-86. PubMed ID: 25511625
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Verification of the Protective Effects of Poplar Phenolic Compounds Against Poplar Anthracnose.
    Zhang L; Ren Y; Meng F; Bao H; Xing F; Tian C
    Phytopathology; 2022 Oct; 112(10):2198-2206. PubMed ID: 35578737
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity.
    Kejela T; Thakkar VR; Thakor P
    BMC Microbiol; 2016 Nov; 16(1):277. PubMed ID: 27863465
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The endochitinase ChiA Btt of Bacillus thuringiensis subsp. tenebrionis DSM-2803 and its potential use to control the phytopathogen Colletotrichum gloeosporioides.
    de la Fuente-Salcido NM; Casados-Vázquez LE; García-Pérez AP; Barboza-Pérez UE; Bideshi DK; Salcedo-Hernández R; García-Almendarez BE; Barboza-Corona JE
    Microbiologyopen; 2016 Oct; 5(5):819-829. PubMed ID: 27173732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908.
    Kim PI; Chung KC
    FEMS Microbiol Lett; 2004 May; 234(1):177-83. PubMed ID: 15109737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antifungal efficacy of biogenic waste derived colloidal/nanobiochar against Colletotrichum gloeosporioides species complex.
    Nishshankage K; Buddhinie PKC; Ezzat AO; Zhang X; Vithanage M
    Environ Res; 2024 Jan; 241():117621. PubMed ID: 37952852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antifungal Activity of
    Choub V; Ajuna HB; Won SJ; Moon JH; Choi SI; Maung CEH; Kim CW; Ahn YS
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antifungal Potential of
    Kim TY; Hwang SH; Noh JS; Cho JY; Maung CEH
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887144
    [No Abstract]   [Full Text] [Related]  

  • 49. Bacillus mycoides A1 and Bacillus tequilensis A3 inhibit the growth of a member of the phytopathogen Colletotrichum gloeosporioides species complex in avocado.
    Guerrero-Barajas C; Constantino-Salinas EA; Amora-Lazcano E; Tlalapango-Ángeles D; Mendoza-Figueroa JS; Cruz-Maya JA; Jan-Roblero J
    J Sci Food Agric; 2020 Aug; 100(10):4049-4056. PubMed ID: 32338377
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity.
    Taechowisan T; Lu C; Shen Y; Lumyong S
    Microbiology (Reading); 2005 May; 151(Pt 5):1691-1695. PubMed ID: 15870476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Iseolides A-C, antifungal macrolides from a coral-derived actinomycete of the genus Streptomyces.
    Zhang Z; Zhou T; Harunari E; Oku N; Igarashi Y
    J Antibiot (Tokyo); 2020 Aug; 73(8):534-541. PubMed ID: 32393809
    [TBL] [Abstract][Full Text] [Related]  

  • 52.
    Liang C; Zhang B; Zhou Y; Yin H; An B; Lin D; He C; Luo H
    Front Microbiol; 2021; 12():629387. PubMed ID: 33763047
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity.
    Ali S; Hameed S; Shahid M; Iqbal M; Lazarovits G; Imran A
    Microbiol Res; 2020 Feb; 232():126389. PubMed ID: 31821969
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancement of a Novel Isolate of Serratia plymuthica as Potential Candidate for an Antianthracnose.
    Aisyah SN; Harnas H; Sulastri S; Retmi R; Fuaddi H; Fatchiyah F; Bakhtiar A; Jamsari J
    Pak J Biol Sci; 2016; 19(6):250-258. PubMed ID: 29023071
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification and characterization of the antifungal substances of a novel Streptomyces cavourensis NA4.
    Pan HQ; Yu SY; Song CF; Wang N; Hua HM; Hu JC; Wang SJ
    J Microbiol Biotechnol; 2015 Mar; 25(3):353-7. PubMed ID: 25269816
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trichoharzianol, a new antifungal from Trichoderma harzianum F031.
    Jeerapong C; Phupong W; Bangrak P; Intana W; Tuchinda P
    J Agric Food Chem; 2015 Apr; 63(14):3704-8. PubMed ID: 25817439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antifungal activity of salaceyin A against Colletotrichum orbiculare and Phytophthora capsici.
    Park CN; Lee D; Kim W; Hong Y; Ahn JS; Kim BS
    J Basic Microbiol; 2007 Aug; 47(4):332-9. PubMed ID: 17647212
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A ConA-like lectin from Dioclea guianensis Benth. has antifungal activity against Colletotrichum gloeosporioides, unlike its homologues, ConM and ConA.
    Araújo-Filho JH; Vasconcelos IM; Martins-Miranda AS; Gondim DM; Oliveira JT
    J Agric Food Chem; 2010 Apr; 58(7):4090-6. PubMed ID: 20201549
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides.
    Kim PI; Ryu J; Kim YH; Chi YT
    J Microbiol Biotechnol; 2010 Jan; 20(1):138-45. PubMed ID: 20134245
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Colletotrichum gloeosporioides cerato-platanin protein, CgCP1, contributes to conidiation and plays roles in the interaction with rubber tree.
    Wang W; An B; Feng L; He C; Luo H
    Can J Microbiol; 2018 Nov; 64(11):826-834. PubMed ID: 29870670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.