These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 32654649)

  • 1. Multi-locus interactions and the build-up of reproductive isolation.
    Satokangas I; Martin SH; Helanterä H; Saramäki J; Kulmuni J
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190543. PubMed ID: 32654649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers.
    Kulmuni J; Butlin RK; Lucek K; Savolainen V; Westram AM
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190528. PubMed ID: 32654637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of strong reproductive isolation in plants: broad-scale patterns and lessons from a perennial model group.
    Shang H; Hess J; Pickup M; Field DL; Ingvarsson PK; Liu J; Lexer C
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190544. PubMed ID: 32654641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genetic architecture of hybrid incompatibilities and their effect on barriers to introgression in secondary contact.
    Lindtke D; Buerkle CA
    Evolution; 2015 Aug; 69(8):1987-2004. PubMed ID: 26174368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of strong reproductive isolation between sympatric intertidal snails.
    Stankowski S; Westram AM; Zagrodzka ZB; Eyres I; Broquet T; Johannesson K; Butlin RK
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190545. PubMed ID: 32654639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of hybrid fitness during speciation.
    Dagilis AJ; Kirkpatrick M; Bolnick DI
    PLoS Genet; 2019 May; 15(5):e1008125. PubMed ID: 31059513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytonuclear incompatibility contributes to the early stages of speciation.
    Barnard-Kubow KB; So N; Galloway LF
    Evolution; 2016 Dec; 70(12):2752-2766. PubMed ID: 27677969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of intrinsic postzygotic barriers throughout the speciation process.
    Coughlan JM; Matute DR
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190533. PubMed ID: 32654642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The limits to parapatric speciation 3: evolution of strong reproductive isolation in presence of gene flow despite limited ecological differentiation.
    Blanckaert A; Bank C; Hermisson J
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190532. PubMed ID: 32654650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide patterns of divergence and introgression after secondary contact between
    Yamasaki YY; Kakioka R; Takahashi H; Toyoda A; Nagano AJ; Machida Y; Møller PR; Kitano J
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190548. PubMed ID: 32654635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genetics of speciation: Insights from Fisher's geometric model.
    Fraïsse C; Gunnarsson PA; Roze D; Bierne N; Welch JJ
    Evolution; 2016 Jul; 70(7):1450-64. PubMed ID: 27252049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybridization in late stages of speciation: Strong but incomplete genome-wide reproductive isolation and 'large Z-effect' in a moving hybrid zone.
    Caeiro-Dias G; Brelsford A; Meneses-Ribeiro M; Crochet PA; Pinho C
    Mol Ecol; 2023 Aug; 32(15):4362-4380. PubMed ID: 37316984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of strong reproductive isolation.
    Barton NH; de Cara MA
    Evolution; 2009 May; 63(5):1171-90. PubMed ID: 19154394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics of isolation in hybrids.
    Gompert Z; Parchman TL; Buerkle CA
    Philos Trans R Soc Lond B Biol Sci; 2012 Feb; 367(1587):439-50. PubMed ID: 22201173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pervasive antagonistic interactions among hybrid incompatibility loci.
    Guerrero RF; Muir CD; Josway S; Moyle LC
    PLoS Genet; 2017 Jun; 13(6):e1006817. PubMed ID: 28604770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion.
    Leppälä J; Bokma F; Savolainen O
    Genetics; 2013 Jul; 194(3):697-708. PubMed ID: 23666938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ecological stage changes benefits of mate choice and drives preference divergence.
    Tinghitella RM; Lackey ACR; Durso C; Koop JAH; Boughman JW
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190546. PubMed ID: 32654644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant hybrids retain heterozygosity at many loci: new insights into the genomics of reproductive isolation in Populus.
    Lindtke D; Buerkle CA; Barbará T; Heinze B; Castiglione S; Bartha D; Lexer C
    Mol Ecol; 2012 Oct; 21(20):5042-58. PubMed ID: 22989336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid speciation through sorting of parental incompatibilities in Italian sparrows.
    Hermansen JS; Haas F; Trier CN; Bailey RI; Nederbragt AJ; Marzal A; Saetre GP
    Mol Ecol; 2014 Dec; 23(23):5831-42. PubMed ID: 25208037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rate test of speciation: estimating the likelihood of non-allopatric speciation from reproductive isolation rates in Drosophila.
    Yukilevich R
    Evolution; 2014 Apr; 68(4):1150-62. PubMed ID: 24274675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.