These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32654866)

  • 1. The Feasibility of a Neck-Surface Accelerometer for Estimating the Amount of Acoustic Output During Phonation Regardless of the Difference in the Mouth Configuration.
    Umatani M; Ogawa M; Iwahashi T; Hosokawa K; Kato C; Inohara H
    J Voice; 2022 May; 36(3):297-308. PubMed ID: 32654866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin Acceleration Levels Estimated by a Neck-surface Accelerometer during Phonation Are Affected by The Mechanical Properties of The Anterior Cervical Skin.
    Umatani M; Ogawa M; Hosokawa K; Kato C; Okajima E; Iwahashi T; Inohara H
    J Voice; 2023 Jul; 37(4):486-495. PubMed ID: 34011459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Nonmodal Phonation on Estimates of Subglottal Pressure From Neck-Surface Acceleration in Healthy Speakers.
    Marks KL; Lin JZ; Fox AB; Toles LE; Mehta DD
    J Speech Lang Hear Res; 2019 Sep; 62(9):3339-3358. PubMed ID: 31518510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Humming Facilitates a Gradual Increase in Vocal Intensity by Alleviating the Enhancement of Vocal Fold Contact and Supraglottic Constriction.
    de Hoop T; Ogawa M; Iwahashi T; Umatani M; Hosokawa K; Kato C; Inohara H
    J Voice; 2021 Jan; 35(1):156.e1-156.e13. PubMed ID: 31160181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Feasibility of Gastroesophageal Manometry for Continuously Evaluating the Degree of Expiratory Effort During Successful Crescendo Phonation.
    Umatani M; Ogawa M; Hosokawa K; Kato C; Okajima E; Iwahashi T; Inohara H
    J Voice; 2023 May; 37(3):470.e7-470.e16. PubMed ID: 33707030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic Perturbation Measures Improve with Increasing Vocal Intensity in Individuals With and Without Voice Disorders.
    Brockmann-Bauser M; Bohlender JE; Mehta DD
    J Voice; 2018 Mar; 32(2):162-168. PubMed ID: 28528786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An exploration of skin acceleration level as a measure of phonatory function in singing.
    Lamarche A; Ternström S
    J Voice; 2008 Jan; 22(1):10-22. PubMed ID: 17059878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of vocal intensity and vowel type on cepstral analysis of voice.
    Awan SN; Giovinco A; Owens J
    J Voice; 2012 Sep; 26(5):670.e15-20. PubMed ID: 22480754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating Subglottal Pressure From Neck-Surface Acceleration During Normal Voice Production.
    Fryd AS; Van Stan JH; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2016 Dec; 59(6):1335-1345. PubMed ID: 27959974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method.
    Shiraishi M; Mishima K; Umeda H
    J Voice; 2021 Jul; 35(4):530-544. PubMed ID: 31889645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of vocal exertion on lung volume measurements and acoustics in speakers reporting high and low vocal fatigue.
    Fujiki RB; Huber JE; Sivasankar MP
    PLoS One; 2022; 17(5):e0268324. PubMed ID: 35551535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliable jitter and shimmer measurements in voice clinics: the relevance of vowel, gender, vocal intensity, and fundamental frequency effects in a typical clinical task.
    Brockmann M; Drinnan MJ; Storck C; Carding PN
    J Voice; 2011 Jan; 25(1):44-53. PubMed ID: 20381308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic comparison of vowel sounds among adult females.
    Franca MC
    J Voice; 2012 Sep; 26(5):671.e9-17. PubMed ID: 22285451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imprecise vowel articulation as a potential early marker of Parkinson's disease: effect of speaking task.
    Rusz J; Cmejla R; Tykalova T; Ruzickova H; Klempir J; Majerova V; Picmausova J; Roth J; Ruzicka E
    J Acoust Soc Am; 2013 Sep; 134(3):2171-81. PubMed ID: 23967947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Fundamental Frequency, Vocal Intensity, Sample Duration, and Vowel Context in Cepstral and Spectral Measures of Dysphonic Voices.
    Sampaio M; Vaz Masson ML; de Paula Soares MF; Bohlender JE; Brockmann-Bauser M
    J Speech Lang Hear Res; 2020 May; 63(5):1326-1339. PubMed ID: 32348195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship Between Subglottal Pressure and Sound Pressure Level in Untrained Voices.
    Björklund S; Sundberg J
    J Voice; 2016 Jan; 30(1):15-20. PubMed ID: 25913752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Subglottal Pressure From Neck Surface Vibration in Patients With Voice Disorders.
    Marks KL; Lin JZ; Burns JA; Hron TA; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2020 Jul; 63(7):2202-2218. PubMed ID: 32610028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of measurement of a voice range profile with a semi-occluded vocal tract.
    Titze IR; Hunter EJ
    Logoped Phoniatr Vocol; 2011 Apr; 36(1):32-9. PubMed ID: 21244326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroglottographic analysis of actresses and nonactresses' voices in different levels of intensity.
    Master S; Guzman M; Carlos de Miranda H; Lloyd A
    J Voice; 2013 Mar; 27(2):187-94. PubMed ID: 23294706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immediate acoustic effects of straw phonation exercises in subjects with dysphonic voices.
    Guzman M; Higueras D; Fincheira C; Muñoz D; Guajardo C; Dowdall J
    Logoped Phoniatr Vocol; 2013 Apr; 38(1):35-45. PubMed ID: 23350916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.