These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32655350)

  • 1. An On-chip Spiking Neural Network for Estimation of the Head Pose of the iCub Robot.
    Kreiser R; Renner A; Leite VRC; Serhan B; Bartolozzi C; Glover A; Sandamirskaya Y
    Front Neurosci; 2020; 14():551. PubMed ID: 32655350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Trajectory Generation for Robotic Control on the Neuromorphic Research Chip Loihi.
    Michaelis C; Lehr AB; Tetzlaff C
    Front Neurorobot; 2020; 14():589532. PubMed ID: 33324191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromorphic NEF-Based Inverse Kinematics and PID Control.
    Zaidel Y; Shalumov A; Volinski A; Supic L; Ezra Tsur E
    Front Neurorobot; 2021; 15():631159. PubMed ID: 33613225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven artificial and spiking neural networks for inverse kinematics in neurorobotics.
    Volinski A; Zaidel Y; Shalumov A; DeWolf T; Supic L; Ezra Tsur E
    Patterns (N Y); 2022 Jan; 3(1):100391. PubMed ID: 35079712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi.
    Dey S; Dimitrov A
    Front Neurosci; 2022; 16():883360. PubMed ID: 35712458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi.
    Dey S; Dimitrov A
    Front Neuroinform; 2022; 16():883360. PubMed ID: 36726406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curiosity driven reinforcement learning for motion planning on humanoids.
    Frank M; Leitner J; Stollenga M; Förster A; Schmidhuber J
    Front Neurorobot; 2014 Jan; 7():25. PubMed ID: 24432001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral Learning in a Cognitive Neuromorphic Robot: An Integrative Approach.
    Rast AD; Adams SV; Davidson S; Davies S; Hopkins M; Rowley A; Stokes AB; Wennekers T; Furber S; Cangelosi A
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6132-6144. PubMed ID: 29994007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware.
    Müller-Cleve SF; Fra V; Khacef L; Pequeño-Zurro A; Klepatsch D; Forno E; Ivanovich DG; Rastogi S; Urgese G; Zenke F; Bartolozzi C
    Front Neurosci; 2022; 16():951164. PubMed ID: 36440280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Socially Adaptable Framework for Human-Robot Interaction.
    Tanevska A; Rea F; Sandini G; Cañamero L; Sciutti A
    Front Robot AI; 2020; 7():121. PubMed ID: 33501287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iCub-HRI: A Software Framework for Complex Human-Robot Interaction Scenarios on the iCub Humanoid Robot.
    Fischer T; Puigbò JY; Camilleri D; Nguyen PDH; Moulin-Frier C; Lallée S; Metta G; Prescott TJ; Demiris Y; Verschure PFMJ
    Front Robot AI; 2018; 5():22. PubMed ID: 33500909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markerless Eye-Hand Kinematic Calibration on the iCub Humanoid Robot.
    Vicente P; Jamone L; Bernardino A
    Front Robot AI; 2018; 5():46. PubMed ID: 33500931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-driven proto-object based saliency in 3D space to attract a robot's attention.
    Ghosh S; D'Angelo G; Glover A; Iacono M; Niebur E; Bartolozzi C
    Sci Rep; 2022 May; 12(1):7645. PubMed ID: 35538154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting semantic information in a spiking neural SLAM system.
    Dumont NS; Furlong PM; Orchard J; Eliasmith C
    Front Neurosci; 2023; 17():1190515. PubMed ID: 37476829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive control of a wheelchair mounted robotic arm with neuromorphically integrated velocity readings and online-learning.
    Ehrlich M; Zaidel Y; Weiss PL; Melamed Yekel A; Gefen N; Supic L; Ezra Tsur E
    Front Neurosci; 2022; 16():1007736. PubMed ID: 36248665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics.
    DeWolf T; Jaworski P; Eliasmith C
    Front Neurorobot; 2020; 14():568359. PubMed ID: 33162886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromorphic Event-Based 3D Pose Estimation.
    Reverter Valeiras D; Orchard G; Ieng SH; Benosman RB
    Front Neurosci; 2015; 9():522. PubMed ID: 26834547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiking CMOS-NVM mixed-signal neuromorphic ConvNet with circuit- and training-optimized temporal subsampling.
    Dorzhigulov A; Saxena V
    Front Neurosci; 2023; 17():1177592. PubMed ID: 37534034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.