These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 32655531)
1. Andrić S; Meyer T; Ongena M Front Microbiol; 2020; 11():1350. PubMed ID: 32655531 [TBL] [Abstract][Full Text] [Related]
2. Lipopeptide Interplay Mediates Molecular Interactions between Soil Bacilli and Pseudomonads. Andrić S; Meyer T; Rigolet A; Prigent-Combaret C; Höfte M; Balleux G; Steels S; Hoff G; De Mot R; McCann A; De Pauw E; Argüelles Arias A; Ongena M Microbiol Spectr; 2021 Dec; 9(3):e0203821. PubMed ID: 34878336 [TBL] [Abstract][Full Text] [Related]
3. Surfactin Stimulated by Pectin Molecular Patterns and Root Exudates Acts as a Key Driver of the Hoff G; Arguelles Arias A; Boubsi F; Pršić J; Meyer T; Ibrahim HMM; Steels S; Luzuriaga P; Legras A; Franzil L; Lequart-Pillon M; Rayon C; Osorio V; de Pauw E; Lara Y; Deboever E; de Coninck B; Jacques P; Deleu M; Petit E; Van Wuytswinkel O; Ongena M mBio; 2021 Dec; 12(6):e0177421. PubMed ID: 34724831 [TBL] [Abstract][Full Text] [Related]
4. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Chowdhury SP; Hartmann A; Gao X; Borriss R Front Microbiol; 2015; 6():780. PubMed ID: 26284057 [TBL] [Abstract][Full Text] [Related]
5. Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides. Asari S; Ongena M; Debois D; De Pauw E; Chen K; Bejai S; Meijer J Ann Bot; 2017 Oct; 120(4):551-562. PubMed ID: 28961818 [TBL] [Abstract][Full Text] [Related]
6. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. Andrić S; Rigolet A; Argüelles Arias A; Steels S; Hoff G; Balleux G; Ongena L; Höfte M; Meyer T; Ongena M ISME J; 2023 Feb; 17(2):263-275. PubMed ID: 36357782 [TBL] [Abstract][Full Text] [Related]
8. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
9. Hashem A; Tabassum B; Fathi Abd Allah E Saudi J Biol Sci; 2019 Sep; 26(6):1291-1297. PubMed ID: 31516360 [TBL] [Abstract][Full Text] [Related]
10. Biological control of plant pathogens by Bacillus species. Fira D; Dimkić I; Berić T; Lozo J; Stanković S J Biotechnol; 2018 Nov; 285():44-55. PubMed ID: 30172784 [TBL] [Abstract][Full Text] [Related]
11. The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides. El Arbi A; Rochex A; Chataigné G; Béchet M; Lecouturier D; Arnauld S; Gharsallah N; Jacques P Res Microbiol; 2016 Jan; 167(1):46-57. PubMed ID: 26428248 [TBL] [Abstract][Full Text] [Related]
12. Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. Malviya D; Sahu PK; Singh UB; Paul S; Gupta A; Gupta AR; Singh S; Kumar M; Paul D; Rai JP; Singh HV; Brahmaprakash GP Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32102264 [TBL] [Abstract][Full Text] [Related]
13. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Chen S; Waghmode TR; Sun R; Kuramae EE; Hu C; Liu B Microbiome; 2019 Oct; 7(1):136. PubMed ID: 31640813 [TBL] [Abstract][Full Text] [Related]
14. Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Guevara-Avendaño E; Carrillo JD; Ndinga-Muniania C; Moreno K; Méndez-Bravo A; Guerrero-Analco JA; Eskalen A; Reverchon F Antonie Van Leeuwenhoek; 2018 Apr; 111(4):563-572. PubMed ID: 29124466 [TBL] [Abstract][Full Text] [Related]
15. Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu. Kulimushi PZ; Basime GC; Nachigera GM; Thonart P; Ongena M Environ Sci Pollut Res Int; 2018 Oct; 25(30):29808-29821. PubMed ID: 28600796 [TBL] [Abstract][Full Text] [Related]
17. The Significance of Miljaković D; Marinković J; Balešević-Tubić S Microorganisms; 2020 Jul; 8(7):. PubMed ID: 32668676 [No Abstract] [Full Text] [Related]
18. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. González-Sánchez MÁ; Pérez-Jiménez RM; Pliego C; Ramos C; de Vicente A; Cazorla FM J Appl Microbiol; 2010 Jul; 109(1):65-78. PubMed ID: 19961545 [TBL] [Abstract][Full Text] [Related]
19. Root-Associated Bacteria Are Biocontrol Agents for Multiple Plant Pests. Lee JH; Anderson AJ; Kim YC Microorganisms; 2022 May; 10(5):. PubMed ID: 35630495 [TBL] [Abstract][Full Text] [Related]
20. Pectin Enhances Bio-Control Efficacy by Inducing Colonization and Secretion of Secondary Metabolites by Bacillus amyloliquefaciens SQY 162 in the Rhizosphere of Tobacco. Wu K; Fang Z; Guo R; Pan B; Shi W; Yuan S; Guan H; Gong M; Shen B; Shen Q PLoS One; 2015; 10(5):e0127418. PubMed ID: 25996156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]