These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32655586)

  • 1. Automated Spike Detection in Diverse European Wheat Plants Using Textural Features and the Frangi Filter in 2D Greenhouse Images.
    Narisetti N; Neumann K; Röder MS; Gladilin E
    Front Plant Sci; 2020; 11():666. PubMed ID: 32655586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods.
    Ullah S; Henke M; Narisetti N; Panzarová K; Trtílek M; Hejatko J; Gladilin E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting spikes of wheat plants using neural networks with Laws texture energy.
    Qiongyan L; Cai J; Berger B; Okamoto M; Miklavcic SJ
    Plant Methods; 2017; 13():83. PubMed ID: 29046709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Recognition of Field-Grown Wheat Spikes Based on a Superpixel Segmentation Algorithm Using Digital Images.
    Tan C; Zhang P; Zhang Y; Zhou X; Wang Z; Du Y; Mao W; Li W; Wang D; Guo W
    Front Plant Sci; 2020; 11():259. PubMed ID: 32211011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-step registration-classification approach to automated segmentation of multimodal images for high-throughput greenhouse plant phenotyping.
    Henke M; Junker A; Neumann K; Altmann T; Gladilin E
    Plant Methods; 2020; 16():95. PubMed ID: 32670387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WheatSpikeNet: an improved wheat spike segmentation model for accurate estimation from field imaging.
    Batin MA; Islam M; Hasan MM; Azad A; Alyami SA; Hossain MA; Miklavcic SJ
    Front Plant Sci; 2023; 14():1226190. PubMed ID: 37692423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties.
    Du J; Lu X; Fan J; Qin Y; Yang X; Guo X
    Front Plant Sci; 2020; 11():563386. PubMed ID: 33123178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Spike Detection in Greenhouse Cultivated Grain Crops with Attention Mechanisms-Based Deep Learning Models.
    Ullah S; Panzarová K; Trtílek M; Lexa M; Máčala V; Neumann K; Altmann T; Hejátko J; Pernisová M; Gladilin E
    Plant Phenomics; 2024; 6():0155. PubMed ID: 38476818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LeTra: a leaf tracking workflow based on convolutional neural networks and intersection over union.
    Jurado-Ruiz F; Nguyen TP; Peller J; Aranzana MJ; Polder G; Aarts MGM
    Plant Methods; 2024 Jan; 20(1):11. PubMed ID: 38233879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering.
    Sadeghi-Tehran P; Sabermanesh K; Virlet N; Hawkesford MJ
    Front Plant Sci; 2017; 8():252. PubMed ID: 28289423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison and extension of three methods for automated registration of multimodal plant images.
    Henke M; Junker A; Neumann K; Altmann T; Gladilin E
    Plant Methods; 2019; 15():44. PubMed ID: 31168314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wheat-Net: An Automatic Dense Wheat Spike Segmentation Method Based on an Optimized Hybrid Task Cascade Model.
    Zhang J; Min A; Steffenson BJ; Su WH; Hirsch CD; Anderson J; Wei J; Ma Q; Yang C
    Front Plant Sci; 2022; 13():834938. PubMed ID: 35222491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holistic and component plant phenotyping using temporal image sequence.
    Das Choudhury S; Bashyam S; Qiu Y; Samal A; Awada T
    Plant Methods; 2018; 14():35. PubMed ID: 29760766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate inference of shoot biomass from high-throughput images of cereal plants.
    Golzarian MR; Frick RA; Rajendran K; Berger B; Roy S; Tester M; Lun DS
    Plant Methods; 2011 Feb; 7():2. PubMed ID: 21284859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a High-Density SNP-Based Linkage Map and Detection of QTL for β-Glucans, Protein Content, Grain Yield per Spike and Heading Time in Durum Wheat.
    Marcotuli I; Gadaleta A; Mangini G; Signorile AM; Zacheo SA; Blanco A; Simeone R; Colasuonno P
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28635630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canopy Apparent Photosynthetic Characteristics and Yield of Two Spike-Type Wheat Cultivars in Response to Row Spacing under High Plant Density.
    Liu T; Wang Z; Cai T
    PLoS One; 2016; 11(2):e0148582. PubMed ID: 26845330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput field crop phenotyping: current status and challenges.
    Ninomiya S
    Breed Sci; 2022 Mar; 72(1):3-18. PubMed ID: 36045897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.