These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32655608)

  • 1. Plant miRNA Cross-Kingdom Transfer Targeting Parasitic and Mutualistic Organisms as a Tool to Advance Modern Agriculture.
    Gualtieri C; Leonetti P; Macovei A
    Front Plant Sci; 2020; 11():930. PubMed ID: 32655608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. microRNAs: Key Regulators in Plant Responses to Abiotic and Biotic Stresses via Endogenous and Cross-Kingdom Mechanisms.
    Ding T; Li W; Li F; Ren M; Wang W
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of transfer of miRNAs from the diet to the blood still inconclusive.
    Mar-Aguilar F; Arreola-Triana A; Mata-Cardona D; Gonzalez-Villasana V; Rodríguez-Padilla C; Reséndez-Pérez D
    PeerJ; 2020; 8():e9567. PubMed ID: 32995073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-kingdom regulation by plant-derived miRNAs in mammalian systems.
    Yang L; Feng H
    Animal Model Exp Med; 2023 Dec; 6(6):518-525. PubMed ID: 38064180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases.
    Saiyed AN; Vasavada AR; Johar SRK
    Futur J Pharm Sci; 2022; 8(1):24. PubMed ID: 35382490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary plant miRNAs as an augmented therapy: cross-kingdom gene regulation.
    Sanchita ; Trivedi R; Asif MH; Trivedi PK
    RNA Biol; 2018; 15(12):1433-1439. PubMed ID: 30474479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNAs from edible plants reach the human gastrointestinal tract and may act as potential regulators of gene expression.
    Díez-Sainz E; Milagro FI; Aranaz P; Riezu-Boj JI; Lorente-Cebrián S
    J Physiol Biochem; 2024 Apr; ():. PubMed ID: 38662188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The knowns and unknowns of helminth-host miRNA cross-kingdom communication.
    Chowdhury S; Sais D; Donnelly S; Tran N
    Trends Parasitol; 2024 Feb; 40(2):176-191. PubMed ID: 38151361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-derived xenomiRs and cancer: Cross-kingdom gene regulation.
    Alshehri B
    Saudi J Biol Sci; 2021 Apr; 28(4):2408-2422. PubMed ID: 33911956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment.
    Yi C; Lu L; Li Z; Guo Q; Ou L; Wang R; Tian X
    Drug Deliv Transl Res; 2024 May; ():. PubMed ID: 38758499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant miRNAs Reduce Cancer Cell Proliferation by Targeting MALAT1 and NEAT1: A Beneficial Cross-Kingdom Interaction.
    Marzano F; Caratozzolo MF; Consiglio A; Licciulli F; Liuni S; Sbisà E; D'Elia D; Tullo A; Catalano D
    Front Genet; 2020; 11():552490. PubMed ID: 33193626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel tomato miRNA miR1001 initiates cross-species regulation to suppress the conidiospore germination and infection virulence of Botrytis cinerea in vitro.
    Meng X; Jin W; Wu F
    Gene; 2020 Oct; 759():145002. PubMed ID: 32726608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the putative microRNAs cross-kingdom transfer in
    Leonetti P; Dallera D; De Marchi D; Candito P; Pasotti L; Macovei A
    Front Plant Sci; 2024; 15():1383986. PubMed ID: 38784062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-kingdom RNA interference mediated by insect salivary microRNAs may suppress plant immunity.
    Zhang ZL; Wang XJ; Lu JB; Lu HB; Ye ZX; Xu ZT; Zhang C; Chen JP; Li JM; Zhang CX; Huang HJ
    Proc Natl Acad Sci U S A; 2024 Apr; 121(16):e2318783121. PubMed ID: 38588412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of DCL, AGO, and RDR gene families in wheat (
    Mishra S; Sharma P; Singh R; Ahlawat OP; Singh G
    Physiol Mol Biol Plants; 2023 Oct; 29(10):1525-1541. PubMed ID: 38076771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of microRNAs in the cyst nematode
    Ste-Croix DT; Bélanger RR; Mimee B
    RNA Biol; 2023 Jan; 20(1):614-628. PubMed ID: 37599428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-Based Control of Fungal Pathogens in Plants.
    Mann CWG; Sawyer A; Gardiner DM; Mitter N; Carroll BJ; Eamens AL
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis.
    He B; Wang H; Liu G; Chen A; Calvo A; Cai Q; Jin H
    Nat Commun; 2023 Jul; 14(1):4383. PubMed ID: 37474601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis.
    He B; Wang H; Liu G; Chen A; Calvo A; Cai Q; Jin H
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small Talk: On the Possible Role of Trans-Kingdom Small RNAs during Plant-Virus-Vector Tritrophic Communication.
    Matsumura EE; Kormelink R
    Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36987098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.