These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32655677)

  • 1. Existence, uniqueness and Malliavin differentiability of Lévy-driven BSDEs with locally Lipschitz driver.
    Geiss C; Steinicke A
    Stochastics (Abingdon); 2020; 92(3):418-453. PubMed ID: 32655677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting.
    Geiss C; Steinicke A
    Probab Uncertain Quant Risk; 2018; 3(1):9. PubMed ID: 30956888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infinite time interval backward stochastic differential equations with continuous coefficients.
    Zong Z; Hu F
    Springerplus; 2016; 5(1):1733. PubMed ID: 27795882
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Kremsner S; Steinicke A
    J Theor Probab; 2022; 35(1):231-281. PubMed ID: 35221486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stochastic Fubini theorem: BSDE method.
    Wang Y
    J Inequal Appl; 2017; 2017(1):77. PubMed ID: 28469354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global exponential stability of neural networks with globally Lipschitz continuous activations and its application to linear variational inequality problem.
    Liang XB; Si J
    IEEE Trans Neural Netw; 2001; 12(2):349-59. PubMed ID: 18244389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sufficient maximum principle for backward stochastic systems with mixed delays.
    Ma H; Jian H; Shi Y
    Math Biosci Eng; 2023 Nov; 20(12):21211-21228. PubMed ID: 38124594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications.
    Balan RM; Nualart D; Quer-Sardanyons L; Zheng G
    Stoch Partial Differ Equ; 2022; 10(3):757-827. PubMed ID: 36196215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stochastic Gilpin-Ayala mutualism model driven by mean-reverting OU process with Lévy jumps.
    Gao M; Ai X
    Math Biosci Eng; 2024 Feb; 21(3):4117-4141. PubMed ID: 38549321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smoothing neural network for constrained non-Lipschitz optimization with applications.
    Bian W; Chen X
    IEEE Trans Neural Netw Learn Syst; 2012 Mar; 23(3):399-411. PubMed ID: 24808547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic resonance in continuous and spiking neuron models with levy noise.
    Patel A; Kosko B
    IEEE Trans Neural Netw; 2008 Dec; 19(12):1993-2008. PubMed ID: 19054725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stochastic SIQR epidemic model with Lévy jumps and three-time delays.
    Zhang G; Li Z; Din A
    Appl Math Comput; 2022 Oct; 431():127329. PubMed ID: 35784101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified stochastic SIR model driven by Lévy noise with time-dependency.
    Easlick T; Sun W
    Adv Contin Discret Model; 2024; 2024(1):22. PubMed ID: 39027117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Existence, uniqueness and regularity of the projection onto differentiable manifolds.
    Leobacher G; Steinicke A
    Ann Glob Anal Geom (Dordr); 2021; 60(3):559-587. PubMed ID: 34720315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distributed-order fractional stochastic differential equation driven by Lévy noise: Existence, uniqueness, and a fast EM scheme.
    Dong J; Du N; Yang Z
    Chaos; 2023 Feb; 33(2):023109. PubMed ID: 36859229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability in distribution for uncertain delay differential equations based on new Lipschitz condition.
    Gao Y; Jia L
    J Ambient Intell Humaniz Comput; 2022 Apr; ():1-15. PubMed ID: 35401853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by Lévy process with time-varying delay.
    Xiong Z; Li X; Ye M; Zhang Q
    Math Biosci Eng; 2021 Sep; 18(6):8462-8498. PubMed ID: 34814308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Well-posedness and qualitative behaviour of a semi-linear parabolic Cauchy problem arising from a generic model for fractional-order autocatalysis.
    Meyer JC; Needham DJ
    Proc Math Phys Eng Sci; 2015 Mar; 471(2175):20140632. PubMed ID: 25792950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculating the Malliavin derivative of some stochastic mechanics problems.
    Hauseux P; Hale JS; Bordas SPA
    PLoS One; 2017; 12(12):e0189994. PubMed ID: 29261776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exponential stability of delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions.
    Song X; Xin X; Huang W
    Neural Netw; 2012 May; 29-30():80-90. PubMed ID: 22425550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.