These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32656082)

  • 1. Impact of Data Preprocessing on Integrative Matrix Factorization of Single Cell Data.
    Hsu LL; Culhane AC
    Front Oncol; 2020; 10():973. PubMed ID: 32656082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of data transformation on low-dimensional integration of single-cell RNA-seq.
    Park Y; Hauschild AC
    BMC Bioinformatics; 2024 Apr; 25(1):171. PubMed ID: 38689234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performing Sparse Regularization and Dimension Reduction Simultaneously in Multimodal Data Fusion.
    Yang Z; Zhuang X; Bird C; Sreenivasan K; Mishra V; Banks S; Cordes D;
    Front Neurosci; 2019; 13():642. PubMed ID: 31333396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Randomized singular value decomposition for integrative subtype analysis of 'omics data' using non-negative matrix factorization.
    Ni Y; He J; Chalise P
    Stat Appl Genet Mol Biol; 2023 Jan; 22(1):. PubMed ID: 37937887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correspondence analysis for dimension reduction, batch integration, and visualization of single-cell RNA-seq data.
    Hsu LL; Culhane AC
    Sci Rep; 2023 Jan; 13(1):1197. PubMed ID: 36681709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable non-negative matrix tri-factorization.
    Čopar A; Žitnik M; Zupan B
    BioData Min; 2017; 10():41. PubMed ID: 29299064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based dimensionality reduction for single-cell RNA-seq using generalized bilinear models.
    Nicol PB; Miller JW
    bioRxiv; 2024 Feb; ():. PubMed ID: 37162914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Truncated Robust Principal Component Analysis and Noise Reduction for Single Cell RNA Sequencing Data.
    Gogolewski K; Sykulski M; Chung NC; Gambin A
    J Comput Biol; 2019 Aug; 26(8):782-793. PubMed ID: 31045436
    [No Abstract]   [Full Text] [Related]  

  • 10. Clustering single-cell multimodal omics data with jrSiCKLSNMF.
    Ellis D; Roy A; Datta S
    Front Genet; 2023; 14():1179439. PubMed ID: 37359367
    [No Abstract]   [Full Text] [Related]  

  • 11. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing microarray data via nonnegative matrix factorization for visualization and clustering analysis.
    Liu W; Yuan K; Ye D
    J Biomed Inform; 2008 Aug; 41(4):602-6. PubMed ID: 18234564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Methods for Evaluating the Number of Components in Non-Negative Matrix Factorization.
    Maisog JM; DeMarco AT; Devarajan K; Young SS; Fogel P; Luta G
    Mathematics (Basel); 2021 Nov; 9(22):. PubMed ID: 35694180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical Bayes Matrix Factorization.
    Wang W; Stephens M
    J Mach Learn Res; 2021; 22():. PubMed ID: 37920532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributed Differentially-Private Algorithms for Matrix and Tensor Factorization.
    Imtiaz H; Sarwate AD
    IEEE J Sel Top Signal Process; 2018 Dec; 12(6):1449-1464. PubMed ID: 31595179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health.
    Fogel P; Gaston-Mathé Y; Hawkins D; Fogel F; Luta G; Young SS
    Int J Environ Res Public Health; 2016 May; 13(5):. PubMed ID: 27213413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consensus scHPF Identifies Cell Type-Specific Drug Responses in Glioma by Integrating Large-Scale scRNA-seq.
    Levitin HM; Zhao W; Bruce JN; Canoll P; Sims PA
    bioRxiv; 2023 Dec; ():. PubMed ID: 38105955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structured covariance principal component analysis for real-time onsite feature extraction and dimensionality reduction in hyperspectral imaging.
    Zabalza J; Ren J; Ren J; Liu Z; Marshall S
    Appl Opt; 2014 Jul; 53(20):4440-9. PubMed ID: 25090063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of regional activation by factorization of high-density surface EMG signals: A comparison of Principal Component Analysis and Non-negative Matrix factorization.
    Gallina A; Garland SJ; Wakeling JM
    J Electromyogr Kinesiol; 2018 Aug; 41():116-123. PubMed ID: 29879693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse Graph Regularization Non-Negative Matrix Factorization Based on Huber Loss Model for Cancer Data Analysis.
    Wang CY; Liu JX; Yu N; Zheng CH
    Front Genet; 2019; 10():1054. PubMed ID: 31824556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.