These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 326561)

  • 1. T lymphocyte induction of non-T cell-mediated nonspecific cytotoxicity. I. Introduction mechanisms.
    Mackler BF; O'Neill PA; Meistrich M
    Eur J Immunol; 1977 Feb; 7(2):55-61. PubMed ID: 326561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation and properties of EA-rosette-forming lymphocytes in humans.
    van Oers MH; Zeijlemaker WP; Schellekens PT
    Eur J Immunol; 1977 Mar; 7(3):143-50. PubMed ID: 324774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro induction of human cell-mediated cytotoxicity directed against herpes simplex virus-infected cells: characterization of the effector lymphocyte.
    Rola-Pleszczynski M
    J Immunol; 1980 Oct; 125(4):1475-80. PubMed ID: 6967905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural cytotoxic reactivity of human lymphocyte subpopulations.
    Potter MR; Moore M
    Immunology; 1979 May; 37(1):187-94. PubMed ID: 288725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mononuclear cell in human blood which mediates antibody-dependent cellular cytotoxicity to virus-infected target cells. I. Identification of the population of effector cells.
    Shore SL; Melewicz FM; Gordon DS
    J Immunol; 1977 Feb; 118(2):558-66. PubMed ID: 190316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-mediated cytotoxicity. Characterization of the effector cells.
    De Bracco MM; Isturiz MA; Manni JA
    Immunology; 1976 Mar; 30(3):325-33. PubMed ID: 1254320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of responses measured by natural cytotoxicity and chemiluminescence.
    Ernst M; Lange A; Flad HD; Havel A; Ennen J; Ulmer AJ
    Eur J Immunol; 1984 Jul; 14(7):634-9. PubMed ID: 6430710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the cell population involved in viral-specific cell-mediated cytotoxicity in man: evidence for T cell specificity.
    Rola-Pleszczynski M; Hurtado RC; Woody JN; Sell KW; Vincent MM; Hensen SA; Bellanti JA
    J Immunol; 1975 Jul; 115(1):239-42. PubMed ID: 50349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinctive functional properties of human blood L lymphocytes: a comparison with T lymphocytes, B lymphocytes, and monocytes.
    Horwitz DA; Garrett MA
    J Immunol; 1977 May; 118(5):1712-21. PubMed ID: 140193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of lymphocyte subpopulations in E-RFC-enriched and E-RFC-depleted cell fractions of fresh and cryopreserved lymphocytes.
    Bolhuis RL; Schuit HR
    Clin Exp Immunol; 1979 Feb; 35(2):317-23. PubMed ID: 312177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity of adherent mononuclear cells detached after 24 hours of culture.
    Cameron DJ
    Jpn J Exp Med; 1985 Dec; 55(6):239-43. PubMed ID: 3879695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitogenic responsiveness and monocyte-lymphocyte interaction of early and late rosette-forming cell populations of human peripheral blood lymphocytes.
    Taniguchi N; Miyawaki T; Moriya N; Nagaoki T; Kato E
    J Immunol; 1977 Jan; 118(1):193-7. PubMed ID: 299756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-mediate cytotoxicity in vitro of human lymphocytes against a tissue culture melanoma cell line (igr3).
    Peter HH; Pavie-Fischer J; Fridman WH; Aubert C; Cesarini JP; Roubin R; Kourilsky FM
    J Immunol; 1975 Aug; 115(2):539-48. PubMed ID: 1171141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subpopulations of human thymus cells differing in their capacity to form stable E-rosettes and in their immunologic reactivity.
    Galili U; Schlesinger M
    J Immunol; 1975 Sep; 115(3):827-33. PubMed ID: 125304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The antibody-independent cytotoxic activity of normal circulating human leucocytes. II. Failure to demonstrate effector cell-target cell interaction and target cell specificity of the circulating cytotoxic-enhancing factor.
    Richter M; Banerjee D; Sklar S
    Immunology; 1981 Sep; 44(1):109-18. PubMed ID: 6944271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of cytolytic activity by anti-T3 monoclonal antibody. Activation of alloimmune memory cells and natural killer cells from normal and immunodeficient individuals.
    Suthanthiran M; Williams PS; Solomon SD; Rubin AL; Stenzel KH
    J Clin Invest; 1984 Dec; 74(6):2263-71. PubMed ID: 6392343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human T cell antigens involved in cytotoxicity against allogeneic or autologous chemically modified targets. Association of the Leu 2a/T8 antigen with effector-target cell binding and of the T3/Leu 4 antigen with triggering.
    Platsoucas CD
    Eur J Immunol; 1984 Jun; 14(6):566-77. PubMed ID: 6610558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural cytotoxic reactivity of human lymphocytes against a myeloid cell line: characterization of effector cells.
    West WH; Cannon GB; Kay HD; Bonnard GD; Herberman RB
    J Immunol; 1977 Jan; 118(1):355-61. PubMed ID: 299761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that active and stable E-rosette forming cells belong to different human T lymphocyte subpopulations.
    Paris SC; GarcĂ­a LF
    Allergol Immunopathol (Madr); 1983; 11(3):161-8. PubMed ID: 6605078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The detection and identification of subpopulations of circulating human lymphocytes, monocytes and neutrophils capable of effecting a mitogen-induced cell-mediated cytotoxic reaction towards erythrocytes of various species.
    Cortens M; Sklar S; Richter M
    Immunology; 1980 Nov; 41(3):623-34. PubMed ID: 7461704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.