BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3265619)

  • 1. Characterization of Ca2+ fluxes in rat liver plasma-membrane vesicles.
    Dargemont C; Hilly M; Claret M; Mauger JP
    Biochem J; 1988 Nov; 256(1):117-24. PubMed ID: 3265619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of bile acid-mediated Ca2+ release from permeabilized liver cells and liver microsomes.
    Combettes L; Berthon B; Doucet E; Erlinger S; Claret M
    J Biol Chem; 1989 Jan; 264(1):157-67. PubMed ID: 2783315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GTP- and inositol 1,4,5-trisphosphate-induced release of 45Ca2+ from a membrane store co-localized with pancreatic-islet-cell plasma membrane.
    Dunlop ME; Larkins RG
    Biochem J; 1988 Jul; 253(1):67-72. PubMed ID: 2458719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inositol 1,4,5-trisphosphate-induced calcium release from platelet plasma membrane vesicles.
    Rengasamy A; Feinberg H
    Biochem Biophys Res Commun; 1988 Feb; 150(3):1021-6. PubMed ID: 3257695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H+-dependent calcium uptake into an IP3-sensitive calcium pool from rat parotid gland.
    Thévenod F; Schulz I
    Am J Physiol; 1988 Oct; 255(4 Pt 1):G429-40. PubMed ID: 3263053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological concentrations of inorganic phosphate affect MgATP-dependent Ca2+ storage and inositol trisphosphate-induced Ca2+ efflux in microsomal vesicles from non-hepatic cells.
    Fulceri R; Bellomo G; Gamberucci A; Romani A; Benedetti A
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):299-306. PubMed ID: 8424767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of nonmitochondrial sequestered Ca2+ from permeabilized muscle cells in culture.
    Ambler SK; Taylor P
    Mol Pharmacol; 1989 Mar; 35(3):369-74. PubMed ID: 2784536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of ATP-dependent Ca2+ uptake by permeabilized rat enterocytes. Effects of inositol 1,4,5-trisphosphate.
    van Corven EJ; Verbost PM; de Jong MD; van Os CH
    Cell Calcium; 1987 Jun; 8(3):197-206. PubMed ID: 3496969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MgATP-dependent accumulation of calcium ions and inorganic phosphate in a liver reticular pool.
    Fulceri R; Bellomo G; Gamberucci A; Benedetti A
    Biochem J; 1990 Dec; 272(2):549-52. PubMed ID: 2268284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-dependent calcium transport in plasma membrane vesicles from neutrophil leukocytes.
    Ochs DL; Reed PW
    J Biol Chem; 1983 Aug; 258(16):10116-22. PubMed ID: 6309768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible physiological role of guanosine triphosphate and inositol 1,4,5-trisphosphate in Ca2+ release in macrophages stimulated with chemotactic peptide.
    Kimura Y; Hirata M; Hamachi T; Koga T
    Biochem J; 1988 Jan; 249(2):531-6. PubMed ID: 3257693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. myo-Inositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplasmic reticulum but not from plasma membranes.
    Delfert DM; Hill S; Pershadsingh HA; Sherman WR; McDonald JM
    Biochem J; 1986 May; 236(1):37-44. PubMed ID: 2947569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive calcium influx by plasma membrane vesicles isolated from rat liver.
    Bygrave FL; Karjalainen A; Altin JG
    Cell Calcium; 1989; 10(4):235-40. PubMed ID: 2505928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size of the inositol 1,4,5-trisphosphate-sensitive calcium pool in guinea-pig hepatocytes.
    Taylor CW; Putney JW
    Biochem J; 1985 Dec; 232(2):435-8. PubMed ID: 3879172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine stimulates Ca2+ fluxes and increases cytosolic free Ca2+ in cultured rat mesangial cells.
    Olivera A; López-Rivas A; López-Novoa JM
    Biochem J; 1992 Mar; 282 ( Pt 3)(Pt 3):871-6. PubMed ID: 1554371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that neomycin inhibits plasma membrane Ca2+ inflow in isolated hepatocytes.
    Hughes BP; Auld AM; Barritt GJ
    Biochem Pharmacol; 1988 Apr; 37(7):1357-61. PubMed ID: 3258517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of lysophospholipids on Ca2+ transport in rat liver mitochondria incubated at physiological Ca2+ concentrations in the presence of Mg2+, phosphate and ATP at 37 degrees C.
    Dalton S; Hughes BP; Barritt GJ
    Biochem J; 1984 Dec; 224(2):423-30. PubMed ID: 6517860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na(+)-Ca2+ antiporter activity of rat hepatocytes. Effect of adrenalectomy on Ca2+ uptake and release from plasma membrane vesicles.
    Studer RK; Borle AB
    Biochim Biophys Acta; 1992 Feb; 1134(1):7-16. PubMed ID: 1543758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of an ATP-dependent Ca2+ transport system in a plasma membrane enriched fraction from rat parotid.
    Low KG; Teo TS; Thiyagarajah P
    Biochem Int; 1987 May; 14(5):921-32. PubMed ID: 3454646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.