These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32656395)

  • 1. Enzyme-Instructed Self-Assembly for Subcellular Targeting.
    Liu S; Xu B
    ACS Omega; 2020 Jul; 5(26):15771-15776. PubMed ID: 32656395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-Instructed Intracellular Peptide Assemblies.
    Liu Z; Guo J; Qiao Y; Xu B
    Acc Chem Res; 2023 Nov; 56(21):3076-3088. PubMed ID: 37883182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypsin-Instructed Self-Assembly on Endoplasmic Reticulum for Selectively Inhibiting Cancer Cells: Dedicated to Professor George M. Whitesides on the occasion of his 80th birthday.
    Kim BJ; Fang Y; He H; Xu B
    Adv Healthc Mater; 2021 Feb; 10(4):e2000416. PubMed ID: 32342647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-Instructed Supramolecular Self-Assembly with Anticancer Activity.
    Yao Q; Huang Z; Liu D; Chen J; Gao Y
    Adv Mater; 2019 Nov; 31(45):e1804814. PubMed ID: 30444545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-Instructed Self-Assembly (EISA) and Hydrogelation of Peptides.
    Gao J; Zhan J; Yang Z
    Adv Mater; 2020 Jan; 32(3):e1805798. PubMed ID: 31018025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-Instructed Self-Assembly for Cancer Therapy and Imaging.
    Kim BJ; Xu B
    Bioconjug Chem; 2020 Mar; 31(3):492-500. PubMed ID: 31995365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic Noncovalent Synthesis for Targeting Subcellular Organelles.
    Zhang Q; Tan W; Xu B
    Chempluschem; 2022 Mar; 87(4):e202200060. PubMed ID: 35420712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance.
    Wang H; Feng Z; Wang Y; Zhou R; Yang Z; Xu B
    J Am Chem Soc; 2016 Dec; 138(49):16046-16055. PubMed ID: 27960313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells.
    Feng Z; Wang H; Chen X; Xu B
    J Am Chem Soc; 2017 Nov; 139(43):15377-15384. PubMed ID: 28990765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-Instructed Self-Assembly of Peptides: From Concept to Representative Applications.
    Kim BJ
    Chem Asian J; 2022 Apr; 17(7):e202200094. PubMed ID: 35213091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Assemblies of Small Molecules Control the Fate of Cells.
    Shi J; Xu B
    Nano Today; 2015 Oct; 10(5):615-630. PubMed ID: 26900396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectively enhancing radiosensitivity of cancer cells
    Gao Y; Gao J; Mu G; Zhang Y; Huang F; Zhang W; Ren C; Yang C; Liu J
    Acta Pharm Sin B; 2020 Dec; 10(12):2374-2383. PubMed ID: 33354508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Continuum of Molecular Assemblies for Controlling Cell Fates.
    Wang H; Feng Z; Xu B
    Chembiochem; 2019 Oct; 20(19):2442-2446. PubMed ID: 30957316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Analysis of Nanostructures Formed by Enzyme-Instructed Intracellular Assemblies against Cancer Cells.
    Li J; Bullara D; Du X; He H; Sofou S; Kevrekidis IG; Epstein IR; Xu B
    ACS Nano; 2018 Apr; 12(4):3804-3815. PubMed ID: 29537820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-Instructed Self-Assembly of Small D-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells.
    Zhou J; Du X; Yamagata N; Xu B
    J Am Chem Soc; 2016 Mar; 138(11):3813-23. PubMed ID: 26966844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation Mechanism and Biomedical Applications of Protease-Manipulated Peptide Assemblies.
    Jiang T; Liu C; Xu X; He B; Mo R
    Front Bioeng Biotechnol; 2021; 9():598050. PubMed ID: 33718335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Narrowing the diversification of supramolecular assemblies by preorganization.
    Wang Z; Liang C; Shang Y; He S; Wang L; Yang Z
    Chem Commun (Camb); 2018 Mar; 54(22):2751-2754. PubMed ID: 29479604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Galactosidase instructed supramolecular hydrogelation for selective identification and removal of senescent cells.
    Xu T; Cai Y; Zhong X; Zhang L; Zheng D; Gao Z; Pan X; Wang F; Chen M; Yang Z
    Chem Commun (Camb); 2019 Jun; 55(50):7175-7178. PubMed ID: 31162503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular targeting strategies for protein and peptide delivery.
    Su H; Rong G; Li L; Cheng Y
    Adv Drug Deliv Rev; 2024 Jul; 212():115387. PubMed ID: 38964543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular compartments and protein topogenesis.
    Tashiro Y
    Cell Struct Funct; 1983 Jun; 8(2):91-107. PubMed ID: 6365337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.