BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32656515)

  • 1. Dosimetric Comparison of Superflab and Specially Prepared Bolus Materials Used in Radiotherapy Practice.
    Aras S; Tanzer İO; İkizceli T
    Eur J Breast Health; 2020 Jul; 16(3):167-170. PubMed ID: 32656515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ninjaflex vs Superflab: A comparison of dosimetric properties, conformity to the skin surface, Planning Target Volume coverage and positional reproducibility for external beam radiotherapy.
    Robertson FM; Couper MB; Kinniburgh M; Monteith Z; Hill G; Pillai SA; Adamson DJA
    J Appl Clin Med Phys; 2021 Apr; 22(4):26-33. PubMed ID: 33689216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of surface and shallow depth dose reductions using a Superflab bolus during conventional and advanced external beam radiotherapy.
    Yoon J; Xie Y; Zhang R
    J Appl Clin Med Phys; 2018 Mar; 19(2):137-143. PubMed ID: 29427312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. eXaSkin: A novel high-density bolus for 6MV X-rays radiotherapy.
    Al-Sudani TA; Biasi G; Wilkinson D; Davis JA; Kearnan R; Matar FS; Cutajar DL; Metcalfe P; Rosenfeld AB
    Phys Med; 2020 Dec; 80():42-46. PubMed ID: 33096418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Dose Measurements in Chest Wall Postmastectomy Radiotherapy to Achieve Optimal Dose Delivery with 6 MV Photon Beam.
    Lobo D; Banerjee S; Srinivas C; Athiyamaan MS; Reddy S; Sunny J; Ravichandran R; Kotian H; Prakash Saxena PU
    J Med Phys; 2021; 46(4):324-333. PubMed ID: 35261503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of wetness level on the suitability of wet gauze as a substitute for Superflab as a bolus material for use with 6 mv photons.
    Benoit J; Pruitt AF; Thrall DE
    Vet Radiol Ultrasound; 2009; 50(5):555-9. PubMed ID: 19788044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of the Gel & Wax Boluses and Comparison of their Dosimetric Performance with Virtual Bolus.
    Verma TR; Painuly NK; Tyagi M; Johny D; Gupta R; Bhatt MLB
    J Biomed Phys Eng; 2019 Dec; 9(6):629-636. PubMed ID: 32039093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dosimetric effects of brass mesh bolus on skin dose and dose at depth for postmastectomy chest wall irradiation.
    Al-Rahbi ZS; Cutajar DL; Metcalfe P; Rosenfeld AB
    Phys Med; 2018 Oct; 54():84-93. PubMed ID: 30337014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical note: Water-equivalent thickness of Superflab bolus material at diagnostic x-ray energies.
    Blunt KF; Marshall EL; Guo C; Lu ZF; Reiser I
    Med Phys; 2023 Feb; 50(2):1237-1241. PubMed ID: 36482752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electron beam attenuating properties of SuperFlab, Play-Doh, and wet gauze, compared to plastic water.
    Nagata K; Lattimer JC; March JS
    Vet Radiol Ultrasound; 2012; 53(1):96-100. PubMed ID: 22092982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical implementation of brass mesh bolus for chest wall postmastectomy radiotherapy and film dosimetry for surface dose estimates.
    Lobo D; Banerjee S; Saxena PU; Ravichandran R; Srinivas C; Putha SK; Kasturi DP
    J Cancer Res Ther; 2019; 15(5):1042-1050. PubMed ID: 31603108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of skin dose for breast chest wall radiotherapy as a function of bolus material.
    Hsu SH; Roberson PL; Chen Y; Marsh RB; Pierce LJ; Moran JM
    Phys Med Biol; 2008 May; 53(10):2593-606. PubMed ID: 18441412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy.
    Shirey RJ; Wu HT
    J Appl Clin Med Phys; 2018 Jan; 19(1):164-173. PubMed ID: 29239528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface and superficial dose dosimetric verification for postmastectomy radiotherapy.
    Shiau AC; Chiu MC; Chen TH; Chiou JF; Shueng PW; Chen SW; Chen WL; Kuan WP
    Med Dosim; 2012; 37(4):417-24. PubMed ID: 22552120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Bolus Materials to Highly Absorbent Polypropylene and Rayon Cloth.
    Visscher S; Barnett E
    J Med Imaging Radiat Sci; 2017 Mar; 48(1):55-60. PubMed ID: 31047211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical note: Evaluation of a silicone-based custom bolus for radiation therapy of a superficial pelvic tumor.
    Wang KM; Rickards AJ; Bingham T; Tward JD; Price RG
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13538. PubMed ID: 35084098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of superficial dosimetry between treatment planning system and measurement for several breast cancer treatment techniques.
    Akino Y; Das IJ; Bartlett GK; Zhang H; Thompson E; Zook JE
    Med Phys; 2013 Jan; 40(1):011714. PubMed ID: 23298084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosimetric verification of surface and superficial doses for head and neck IMRT with different PTV shrinkage margins.
    Shiau AC; Lai PL; Liang JA; Shueng PW; Chen WL; Kuan WP
    Med Phys; 2011 Mar; 38(3):1435-43. PubMed ID: 21520855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects on skin dose from unwanted air gaps under bolus in an MR-guided linear accelerator (MR-linac) system.
    Huang CY; Yang B; Lam WW; Tang KK; Li TC; Law WK; Cheung KY; Yu SK
    Phys Med Biol; 2021 Mar; 66(6):065021. PubMed ID: 33607641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of Dose to the Contralateral Breast by Superflab Use in Radiation Therapy for Mammary Carcinomas.
    Solanki A; M A; A H; Kumar HS
    Asian Pac J Cancer Prev; 2017 Apr; 18(4):1025-1029. PubMed ID: 28545264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.