These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 32656801)
41. Tumor Microenvironment-Responsive Nanococktails for Synergistic Enhancement of Cancer Treatment via Cascade Reactions. Chen Q; Ma Y; Bai P; Li Q; Canup BSB; Long D; Ke B; Dai F; Xiao B; Li C ACS Appl Mater Interfaces; 2021 Feb; 13(4):4861-4873. PubMed ID: 33471499 [TBL] [Abstract][Full Text] [Related]
42. On-Demand Detaching Nanosystem for the Spatiotemporal Control of Cancer Theranostics. Liu T; Wan Q; Luo Y; Chen M; Zou C; Ma M; Liu X; Chen H ACS Appl Mater Interfaces; 2019 May; 11(18):16285-16295. PubMed ID: 30986025 [TBL] [Abstract][Full Text] [Related]
43. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles. Wang M; You C; Gao Z; Wu H; Sun B; Zhu X; Chen R J Biomater Sci Polym Ed; 2018 Aug; 29(11):1360-1374. PubMed ID: 29611463 [TBL] [Abstract][Full Text] [Related]
44. Actively targeting D-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) nanoparticles as vesicles for chemo-photodynamic combination therapy of doxorubicin-resistant breast cancer. Jiang D; Gao X; Kang T; Feng X; Yao J; Yang M; Jing Y; Zhu Q; Feng J; Chen J Nanoscale; 2016 Feb; 8(5):3100-18. PubMed ID: 26785758 [TBL] [Abstract][Full Text] [Related]
45. pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Hou W; Zhao X; Qian X; Pan F; Zhang C; Yang Y; de la Fuente JM; Cui D Nanoscale; 2016 Jan; 8(1):104-16. PubMed ID: 26607263 [TBL] [Abstract][Full Text] [Related]
46. [The development of novel tumor targeting delivery strategy]. Gao HL; Jiang XG Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581 [TBL] [Abstract][Full Text] [Related]
47. PSMA-targeted melanin-like nanoparticles as a multifunctional nanoplatform for prostate cancer theranostics. Dai L; Shen G; Wang Y; Yang P; Wang H; Liu Z J Mater Chem B; 2021 Jan; 9(4):1151-1161. PubMed ID: 33434248 [TBL] [Abstract][Full Text] [Related]
48. Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy. Yang HY; Jang MS; Li Y; Fu Y; Wu TP; Lee JH; Lee DS J Control Release; 2019 May; 301():157-165. PubMed ID: 30905667 [TBL] [Abstract][Full Text] [Related]
49. Polydopamine-mediated bio-inspired synthesis of copper sulfide nanoparticles for T Xiong Y; Sun F; Zhang Y; Yang Z; Liu P; Zou Y; Yu Y; Tong F; Yi C; Yang S; Xu Z Colloids Surf B Biointerfaces; 2019 Jan; 173():607-615. PubMed ID: 30359959 [TBL] [Abstract][Full Text] [Related]
50. Multifunctional theranostic contrast agent for photoacoustics- and ultrasound-based tumor diagnosis and ultrasound-stimulated local tumor therapy. Moon H; Kang J; Sim C; Kim J; Lee H; Chang JH; Kim H J Control Release; 2015 Nov; 218():63-71. PubMed ID: 26432554 [TBL] [Abstract][Full Text] [Related]
51. An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy. Ai F; Wang N; Zhang X; Sun T; Zhu Q; Kong W; Wang F; Zhu G Nanoscale; 2018 Mar; 10(9):4432-4441. PubMed ID: 29451577 [TBL] [Abstract][Full Text] [Related]
52. Ratiometric theranostic nanoprobe for pH imaging-guided photodynamic therapy. Cheng H; Fan GL; Fan JH; Zhao LP; Zheng RR; Yu XY; Li SY Nanoscale; 2019 May; 11(18):9008-9014. PubMed ID: 31020984 [TBL] [Abstract][Full Text] [Related]
53. Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer. Jiang D; Xu M; Pei Y; Huang Y; Chen Y; Ma F; Lu H; Chen J Acta Biomater; 2019 Apr; 88():406-421. PubMed ID: 30763634 [TBL] [Abstract][Full Text] [Related]
54. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Gao M; Yu F; Lv C; Choo J; Chen L Chem Soc Rev; 2017 Apr; 46(8):2237-2271. PubMed ID: 28319221 [TBL] [Abstract][Full Text] [Related]
55. pH and Glutathione Synergistically Triggered Release and Self-Assembly of Au Nanospheres for Tumor Theranostics. An L; Cao M; Zhang X; Lin J; Tian Q; Yang S ACS Appl Mater Interfaces; 2020 Feb; 12(7):8050-8061. PubMed ID: 31994376 [TBL] [Abstract][Full Text] [Related]
56. Protease-activated nanomaterials for targeted cancer theranostics. Chan YC; Hsiao M Nanomedicine (Lond); 2017 Sep; 12(18):2153-2159. PubMed ID: 28814163 [TBL] [Abstract][Full Text] [Related]
57. Highly Efficient Photosensitizers with Far-Red/Near-Infrared Aggregation-Induced Emission for In Vitro and In Vivo Cancer Theranostics. Wang D; Lee MMS; Shan G; Kwok RTK; Lam JWY; Su H; Cai Y; Tang BZ Adv Mater; 2018 Sep; 30(39):e1802105. PubMed ID: 30133835 [TBL] [Abstract][Full Text] [Related]
58. A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy. Guo Y; Wang XY; Chen YL; Liu FQ; Tan MX; Ao M; Yu JH; Ran HT; Wang ZX Acta Biomater; 2018 Oct; 80():308-326. PubMed ID: 30240955 [TBL] [Abstract][Full Text] [Related]
59. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Shapira A; Livney YD; Broxterman HJ; Assaraf YG Drug Resist Updat; 2011 Jun; 14(3):150-63. PubMed ID: 21330184 [TBL] [Abstract][Full Text] [Related]
60. Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics. Zhao Y; Houston ZH; Simpson JD; Chen L; Fletcher NL; Fuchs AV; Blakey I; Thurecht KJ Mol Pharm; 2017 Oct; 14(10):3539-3549. PubMed ID: 28880092 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]