These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Intensive virtual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a single case experimental design and fMRI. Schuster-Amft C; Henneke A; Hartog-Keisker B; Holper L; Siekierka E; Chevrier E; Pyk P; Kollias S; Kiper D; Eng K Disabil Rehabil Assist Technol; 2015; 10(5):385-92. PubMed ID: 24730659 [TBL] [Abstract][Full Text] [Related]
3. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study. Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855 [TBL] [Abstract][Full Text] [Related]
4. Using Virtual Reality to Transfer Motor Skill Knowledge from One Hand to Another. Ossmy O; Mukamel R J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994768 [TBL] [Abstract][Full Text] [Related]
5. Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis. Fuentes MA; Borrego A; Latorre J; Colomer C; Alcañiz M; Sánchez-Ledesma MJ; Noé E; Llorens R J Med Syst; 2018 Apr; 42(5):87. PubMed ID: 29611142 [TBL] [Abstract][Full Text] [Related]
6. VITA-an everyday virtual reality setup for prosthetics and upper-limb rehabilitation. Nissler C; Nowak M; Connan M; Büttner S; Vogel J; Kossyk I; Márton ZC; Castellini C J Neural Eng; 2019 Apr; 16(2):026039. PubMed ID: 30864550 [TBL] [Abstract][Full Text] [Related]
7. The effects of supervised and non-supervised upper limb virtual reality exercises on upper limb sensory-motor functions in patients with idiopathic Parkinson's disease. Hashemi Y; Taghizadeh G; Azad A; Behzadipour S Hum Mov Sci; 2022 Oct; 85():102977. PubMed ID: 35932518 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the effect and mechanism of upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation for subacute stroke subjects: study protocol for a randomized controlled trial. Huang Q; Wu W; Chen X; Wu B; Wu L; Huang X; Jiang S; Huang L Trials; 2019 Feb; 20(1):104. PubMed ID: 30728055 [TBL] [Abstract][Full Text] [Related]
9. Proprioceptive Training with Visual Feedback Improves Upper Limb Function in Stroke Patients: A Pilot Study. He J; Li C; Lin J; Shu B; Ye B; Wang J; Lin Y; Jia J Neural Plast; 2022; 2022():1588090. PubMed ID: 35075359 [TBL] [Abstract][Full Text] [Related]
10. Is upper limb virtual reality training more intensive than conventional training for patients in the subacute phase after stroke? An analysis of treatment intensity and content. Brunner I; Skouen JS; Hofstad H; Aßmuss J; Becker F; Pallesen H; Thijs L; Verheyden G BMC Neurol; 2016 Nov; 16(1):219. PubMed ID: 27835977 [TBL] [Abstract][Full Text] [Related]
11. Camera-Based Mirror Visual Feedback: Potential to Improve Motor Preparation in Stroke Patients. Ding L; Wang X; Guo X; Chen S; Wang H; Jiang N; Jia J IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1897-1905. PubMed ID: 30106735 [TBL] [Abstract][Full Text] [Related]
12. [Virtual reality in upper extremity dysfunction: specific features of usage in acute stroke]. Dolganov MV; Karpova MI Vopr Kurortol Fizioter Lech Fiz Kult; 2019; 96(5):19-28. PubMed ID: 31626156 [TBL] [Abstract][Full Text] [Related]
13. Innovative approaches to the rehabilitation of upper extremity hemiparesis using virtual environments. Merians AS; Tunik E; Fluet GG; Qiu Q; Adamovich SV Eur J Phys Rehabil Med; 2009 Mar; 45(1):123-33. PubMed ID: 19158659 [TBL] [Abstract][Full Text] [Related]
14. SENSory re-learning of the UPPer limb after stroke (SENSUPP): study protocol for a pilot randomized controlled trial. Carlsson H; Rosén B; Pessah-Rasmussen H; Björkman A; Brogårdh C Trials; 2018 Apr; 19(1):229. PubMed ID: 29665842 [TBL] [Abstract][Full Text] [Related]
15. Haptic Neurorehabilitation and Virtual Reality for Upper Limb Paralysis: A Review. Piggott L; Wagner S; Ziat M Crit Rev Biomed Eng; 2016; 44(1-2):1-32. PubMed ID: 27652449 [TBL] [Abstract][Full Text] [Related]
16. Combined robot motor assistance with neural circuit-based virtual reality (NeuCir-VR) lower extremity rehabilitation training in patients after stroke: a study protocol for a single-centre randomised controlled trial. Zhou ZQ; Hua XY; Wu JJ; Xu JJ; Ren M; Shan CL; Xu JG BMJ Open; 2022 Dec; 12(12):e064926. PubMed ID: 36564112 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback. Kurzynski M; Jaskolska A; Marusiak J; Wolczowski A; Bierut P; Szumowski L; Witkowski J; Kisiel-Sajewicz K Comput Biol Med; 2017 Aug; 87():311-321. PubMed ID: 28641235 [TBL] [Abstract][Full Text] [Related]
18. Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy. Ballester BR; Maier M; San Segundo Mozo RM; Castañeda V; Duff A; M J Verschure PF J Neuroeng Rehabil; 2016 Aug; 13(1):74. PubMed ID: 27506203 [TBL] [Abstract][Full Text] [Related]
19. Personalized upper limb training combined with anodal-tDCS for sensorimotor recovery in spastic hemiparesis: study protocol for a randomized controlled trial. Levin MF; Baniña MC; Frenkel-Toledo S; Berman S; Soroker N; Solomon JM; Liebermann DG Trials; 2018 Jan; 19(1):7. PubMed ID: 29301545 [TBL] [Abstract][Full Text] [Related]
20. An augmented reality system for upper-limb post-stroke motor rehabilitation: a feasibility study. Assis GA; Corrêa AG; Martins MB; Pedrozo WG; Lopes Rde D Disabil Rehabil Assist Technol; 2016 Aug; 11(6):521-8. PubMed ID: 25367103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]