These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32657394)

  • 1. A Bayesian framework for inter-cellular information sharing improves dscRNA-seq quantification.
    Srivastava A; Malik L; Sarkar H; Patro R
    Bioinformatics; 2020 Jul; 36(Suppl_1):i292-i299. PubMed ID: 32657394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data.
    Srivastava A; Malik L; Smith T; Sudbery I; Patro R
    Genome Biol; 2019 Mar; 20(1):65. PubMed ID: 30917859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level.
    Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2019 Jul; 35(14):i136-i144. PubMed ID: 31510649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes.
    Srivastava A; Sarkar H; Gupta N; Patro R
    Bioinformatics; 2016 Jun; 32(12):i192-i200. PubMed ID: 27307617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the strength of expression conservation from high throughput RNA-seq data.
    Gu X; Ruan H; Yang J
    Bioinformatics; 2019 Dec; 35(23):5030-5038. PubMed ID: 31114853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression.
    Raghupathy N; Choi K; Vincent MJ; Beane GL; Sheppard KS; Munger SC; Korstanje R; Pardo-Manual de Villena F; Churchill GA
    Bioinformatics; 2018 Jul; 34(13):2177-2184. PubMed ID: 29444201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and accurate approximate inference of transcript expression from RNA-seq data.
    Hensman J; Papastamoulis P; Glaus P; Honkela A; Rattray M
    Bioinformatics; 2015 Dec; 31(24):3881-9. PubMed ID: 26315907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian information sharing enhances detection of regulatory associations in rare cell types.
    Wu AP; Peng J; Berger B; Cho H
    Bioinformatics; 2021 Jul; 37(Suppl_1):i349-i357. PubMed ID: 34252956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data.
    Gu J; Wang X; Halakivi-Clarke L; Clarke R; Xuan J
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S6. PubMed ID: 25252852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating EM algorithm for a bilinear model in isoform quantification from RNA-seq data.
    Deng W; Mou T; Kalari KR; Niu N; Wang L; Pawitan Y; Vu TN
    Bioinformatics; 2020 Feb; 36(3):805-812. PubMed ID: 31400221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TIGAR: transcript isoform abundance estimation method with gapped alignment of RNA-Seq data by variational Bayesian inference.
    Nariai N; Hirose O; Kojima K; Nagasaki M
    Bioinformatics; 2013 Sep; 29(18):2292-9. PubMed ID: 23821651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terminus enables the discovery of data-driven, robust transcript groups from RNA-seq data.
    Sarkar H; Srivastava A; Bravo HC; Love MI; Patro R
    Bioinformatics; 2020 Jul; 36(Suppl_1):i102-i110. PubMed ID: 32657377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MGcount: a total RNA-seq quantification tool to address multi-mapping and multi-overlapping alignments ambiguity in non-coding transcripts.
    Hita A; Brocart G; Fernandez A; Rehmsmeier M; Alemany A; Schvartzman S
    BMC Bioinformatics; 2022 Jan; 23(1):39. PubMed ID: 35030988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data.
    Zhang W; Wei Y; Zhang D; Xu EY
    Bioinformatics; 2020 May; 36(10):3124-3130. PubMed ID: 32053182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework.
    Zheng Q; Grice EA
    PLoS Comput Biol; 2016 Oct; 12(10):e1005096. PubMed ID: 27706155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covariate-dependent negative binomial factor analysis of RNA sequencing data.
    Zamani Dadaneh S; Zhou M; Qian X
    Bioinformatics; 2018 Jul; 34(13):i61-i69. PubMed ID: 29949981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast and globally optimal solution for RNA-seq quantification.
    Yi H; Lin Y; Chang Q; Jin W
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37595963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ClusterMap: compare multiple single cell RNA-Seq datasets across different experimental conditions.
    Gao X; Hu D; Gogol M; Li H
    Bioinformatics; 2019 Sep; 35(17):3038-3045. PubMed ID: 30649203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.