These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32657403)

  • 1. Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition.
    Trofimov A; Cohen JP; Bengio Y; Perreault C; Lemieux S
    Bioinformatics; 2020 Jul; 36(Suppl_1):i417-i426. PubMed ID: 32657403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses.
    Woloszynek S; Zhao Z; Chen J; Rosen GL
    PLoS Comput Biol; 2019 Feb; 15(2):e1006721. PubMed ID: 30807567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration.
    Cao Y; Fu L; Wu J; Peng Q; Nie Q; Zhang J; Xie X
    Bioinformatics; 2021 Jul; 37(Suppl_1):i317-i326. PubMed ID: 34252968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learned protein embeddings for machine learning.
    Yang KK; Wu Z; Bedbrook CN; Arnold FH
    Bioinformatics; 2018 Aug; 34(15):2642-2648. PubMed ID: 29584811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VeloViz: RNA velocity-informed embeddings for visualizing cellular trajectories.
    Atta L; Sahoo A; Fan J
    Bioinformatics; 2022 Jan; 38(2):391-396. PubMed ID: 34500455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SMILE: mutual information learning for integration of single-cell omics data.
    Xu Y; Das P; McCord RP
    Bioinformatics; 2022 Jan; 38(2):476-486. PubMed ID: 34623402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. deepSimDEF: deep neural embeddings of gene products and gene ontology terms for functional analysis of genes.
    Pesaranghader A; Matwin S; Sokolova M; Grenier JC; Beiko RG; Hussin J
    Bioinformatics; 2022 May; 38(11):3051-3061. PubMed ID: 35536192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BEENE: deep learning-based nonlinear embedding improves batch effect estimation.
    Rahman MA; Tutul AA; Sharmin M; Bayzid MS
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37561107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the BERT model on nucleotide sequences with non-standard pre-training and evaluation of different k-mer embeddings.
    Zhang YZ; Bai Z; Imoto S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37815839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear functional organization of the omic embedding space.
    Xenos A; Malod-Dognin N; Milinković S; Pržulj N
    Bioinformatics; 2021 Nov; 37(21):3839-3847. PubMed ID: 34213534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions.
    Yan Z; Hamilton WL; Blanchette M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i276-i284. PubMed ID: 32657407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DensityPath: an algorithm to visualize and reconstruct cell state-transition path on density landscape for single-cell RNA sequencing data.
    Chen Z; An S; Bai X; Gong F; Ma L; Wan L
    Bioinformatics; 2019 Aug; 35(15):2593-2601. PubMed ID: 30535348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embeddings of genomic region sets capture rich biological associations in lower dimensions.
    Gharavi E; Gu A; Zheng G; Smith JP; Cho HJ; Zhang A; Brown DE; Sheffield NC
    Bioinformatics; 2021 Dec; 37(23):4299-4306. PubMed ID: 34156475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale.
    Chen Q; Lee K; Yan S; Kim S; Wei CH; Lu Z
    PLoS Comput Biol; 2020 Apr; 16(4):e1007617. PubMed ID: 32324731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast clustering and cell-type annotation of scATAC data using pre-trained embeddings.
    LeRoy NJ; Smith JP; Zheng G; Rymuza J; Gharavi E; Brown DE; Zhang A; Sheffield NC
    NAR Genom Bioinform; 2024 Sep; 6(3):lqae073. PubMed ID: 38974799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer mutational signatures representation by large-scale context embedding.
    Zhang Y; Xiao Y; Yang M; Ma J
    Bioinformatics; 2020 Jul; 36(Suppl_1):i309-i316. PubMed ID: 32657413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large margin low rank tensor analysis.
    Zhong G; Cheriet M
    Neural Comput; 2014 Apr; 26(4):761-80. PubMed ID: 24479778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-quality gene/disease embedding in a multi-relational heterogeneous graph after a joint matrix/tensor decomposition.
    Zhou K; Zhang S; Wang Y; Cohen KB; Kim JD; Luo Q; Yao X; Zhou X; Xia J
    J Biomed Inform; 2022 Feb; 126():103973. PubMed ID: 34995810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ntEmbd: Deep learning embedding for nucleotide sequences.
    Hafezqorani S; Nip KM; Birol I
    bioRxiv; 2024 May; ():. PubMed ID: 38746190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.