BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 32657406)

  • 1. Combining phenome-driven drug-target interaction prediction with patients' electronic health records-based clinical corroboration toward drug discovery.
    Zhou M; Zheng C; Xu R
    Bioinformatics; 2020 Jul; 36(Suppl_1):i436-i444. PubMed ID: 32657406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Drug-Side Effect Context-Sensitive Network approach for drug target prediction.
    Zhou M; Chen Y; Xu R
    Bioinformatics; 2019 Jun; 35(12):2100-2107. PubMed ID: 30428013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenome-driven disease genetics prediction toward drug discovery.
    Chen Y; Li L; Zhang GQ; Xu R
    Bioinformatics; 2015 Jun; 31(12):i276-83. PubMed ID: 26072493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Context-sensitive network-based disease genetics prediction and its implications in drug discovery.
    Chen Y; Xu R
    Bioinformatics; 2017 Apr; 33(7):1031-1039. PubMed ID: 28062449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting drug-target interactions using restricted Boltzmann machines.
    Wang Y; Zeng J
    Bioinformatics; 2013 Jul; 29(13):i126-34. PubMed ID: 23812976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction and evaluation of combination pharmacotherapy using natural language processing, machine learning and patient electronic health records.
    Ding P; Pan Y; Wang Q; Xu R
    J Biomed Inform; 2022 Sep; 133():104164. PubMed ID: 35985621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMTF-DTI: A Nonnegative Matrix Tri-factorization Approach With Multiple Kernel Fusion for Drug-Target Interaction Prediction.
    Jamali AA; Kusalik A; Wu FX
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):586-594. PubMed ID: 34914594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple similarity drug-target interaction prediction with random walks and matrix factorization.
    Liu B; Papadopoulos D; Malliaros FD; Tsoumakas G; Papadopoulos AN
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining comorbidities of opioid use disorder from FDA adverse event reporting system and patient electronic health records.
    Pan Y; Xu R
    BMC Med Inform Decis Mak; 2022 Jun; 22(Suppl 2):155. PubMed ID: 35710401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring Interactions between Novel Drugs and Novel Targets via Instance-Neighborhood-Based Models.
    Shi JY; Li JX; Chen BL; Zhang Y
    Curr Protein Pept Sci; 2018; 19(5):488-497. PubMed ID: 27829347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning.
    Wu Z; Cheng F; Li J; Li W; Liu G; Tang Y
    Brief Bioinform; 2017 Mar; 18(2):333-347. PubMed ID: 26944082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease comorbidity-guided drug repositioning: a case study in schizophrenia.
    Wang Q; Xu R
    AMIA Annu Symp Proc; 2018; 2018():1300-1309. PubMed ID: 30815174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction.
    Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DTI-Voodoo: machine learning over interaction networks and ontology-based background knowledge predicts drug-target interactions.
    Hinnerichs T; Hoehndorf R
    Bioinformatics; 2021 Dec; 37(24):4835-4843. PubMed ID: 34320178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug repurposing for opioid use disorders: integration of computational prediction, clinical corroboration, and mechanism of action analyses.
    Zhou M; Wang Q; Zheng C; John Rush A; Volkow ND; Xu R
    Mol Psychiatry; 2021 Sep; 26(9):5286-5296. PubMed ID: 33432189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique.
    Hao M; Wang Y; Bryant SH
    Anal Chim Acta; 2016 Feb; 909():41-50. PubMed ID: 26851083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DASPfind: new efficient method to predict drug-target interactions.
    Ba-Alawi W; Soufan O; Essack M; Kalnis P; Bajic VB
    J Cheminform; 2016; 8():15. PubMed ID: 26985240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.