BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32657410)

  • 1. TopicNet: a framework for measuring transcriptional regulatory network change.
    Lou S; Li T; Kong X; Zhang J; Liu J; Lee D; Gerstein M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i474-i481. PubMed ID: 32657410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of topic models to a compendium of ChIP-Seq datasets uncovers recurrent transcriptional regulatory modules.
    Yang G; Ma A; Qin ZS; Chen L
    Bioinformatics; 2020 Apr; 36(8):2352-2358. PubMed ID: 31899481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DiNeR: a Differential graphical model for analysis of co-regulation Network Rewiring.
    Zhang J; Liu J; Lee D; Lou S; Chen Z; Gürsoy G; Gerstein M
    BMC Bioinformatics; 2020 Jul; 21(1):281. PubMed ID: 32615918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using high-throughput multi-omics data to investigate structural balance in elementary gene regulatory network motifs.
    Zenere A; Rundquist O; Gustafsson M; Altafini C
    Bioinformatics; 2021 Dec; 38(1):173-178. PubMed ID: 34383882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NetProphet 2.0: mapping transcription factor networks by exploiting scalable data resources.
    Kang Y; Liow HH; Maier EJ; Brent MR
    Bioinformatics; 2018 Jan; 34(2):249-257. PubMed ID: 28968736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-assisted curation of a human regulatory core network from the biological literature.
    Thomas P; Durek P; Solt I; Klinger B; Witzel F; Schulthess P; Mayer Y; Tikk D; Blüthgen N; Leser U
    Bioinformatics; 2015 Apr; 31(8):1258-66. PubMed ID: 25433699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring the regulatory interaction models of transcription factors in transcriptional regulatory networks.
    Awad S; Panchy N; Ng SK; Chen J
    J Bioinform Comput Biol; 2012 Oct; 10(5):1250012. PubMed ID: 22849367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0.
    Skok Gibbs C; Jackson CA; Saldi GA; Tjärnberg A; Shah A; Watters A; De Veaux N; Tchourine K; Yi R; Hamamsy T; Castro DM; Carriero N; Gorissen BL; Gresham D; Miraldi ER; Bonneau R
    Bioinformatics; 2022 Apr; 38(9):2519-2528. PubMed ID: 35188184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.
    Xu T; Le TD; Liu L; Wang R; Sun B; Li J
    PLoS One; 2016; 11(4):e0152792. PubMed ID: 27035433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annotating regulatory elements by heterogeneous network embedding.
    Lu Y; Feng Z; Zhang S; Wang Y
    Bioinformatics; 2022 May; 38(10):2899-2911. PubMed ID: 35561169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the effect of dependence between conditions with Bayesian Linear Mixed Models for motif activity analysis.
    Lederer S; Heskes T; van Heeringen SJ; Albers CA
    PLoS One; 2020; 15(5):e0231824. PubMed ID: 32357166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProSampler: an ultrafast and accurate motif finder in large ChIP-seq datasets for combinatory motif discovery.
    Li Y; Ni P; Zhang S; Li G; Su Z
    Bioinformatics; 2019 Nov; 35(22):4632-4639. PubMed ID: 31070745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential network analysis by simultaneously considering changes in gene interactions and gene expression.
    Tu JJ; Ou-Yang L; Zhu Y; Yan H; Qin H; Zhang XF
    Bioinformatics; 2021 Dec; 37(23):4414-4423. PubMed ID: 34245246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human.
    Liang C; Li Y; Luo J; Zhang Z
    Bioinformatics; 2015 Jul; 31(14):2348-55. PubMed ID: 25788622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription factor regulatory modules provide the molecular mechanisms for functional redundancy observed among transcription factors in yeast.
    Yang TH
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):630. PubMed ID: 31881824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors.
    Ma X; Ezer D; Adryan B; Stevens TJ
    Genome Biol; 2018 Oct; 19(1):174. PubMed ID: 30359306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.