These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32657523)

  • 41. Molecularly dispersed nickel complexes on N-doped graphene for electrochemical CO
    Juthathan M; Chantarojsiri T; Chainok K; Butburee T; Thamyongkit P; Tuntulani T; Leeladee P
    Dalton Trans; 2023 Aug; 52(33):11407-11418. PubMed ID: 37283196
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Asymmetric Push-Pull Type Co(II) Porphyrin for Enhanced Electrocatalytic CO
    Huang C; Bao W; Huang S; Wang B; Wang C; Han S; Lu C; Qiu F
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615343
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tuning Second Coordination Sphere Interactions in Polypyridyl-Iron Complexes to Achieve Selective Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide.
    Zee DZ; Nippe M; King AE; Chang CJ; Long JR
    Inorg Chem; 2020 Apr; 59(7):5206-5217. PubMed ID: 32212626
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Boron and nitrogen co-doped carbon nanosheets encapsulating nano iron as an efficient catalyst for electrochemical CO
    Ghosh S; Ramaprabhu S
    J Colloid Interface Sci; 2020 Feb; 559():169-177. PubMed ID: 31627140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A bio-inspired O
    Lu X; Jiang Z; Yuan X; Wu Y; Malpass-Evans R; Zhong Y; Liang Y; McKeown NB; Wang H
    Sci Bull (Beijing); 2019 Dec; 64(24):1890-1895. PubMed ID: 36659584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Importance of Au nanostructures in CO
    Yang DR; Liu L; Zhang Q; Shi Y; Zhou Y; Liu C; Wang FB; Xia XH
    Sci Bull (Beijing); 2020 May; 65(10):796-802. PubMed ID: 36659197
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of Protonation State on Electrocatalytic CO
    Liu JJ; Chapovetsky A; Haiges R; Marinescu SC
    Inorg Chem; 2021 Dec; 60(23):17517-17528. PubMed ID: 34761920
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interplay of Homogeneous Reactions, Mass Transport, and Kinetics in Determining Selectivity of the Reduction of CO
    Zhang BA; Ozel T; Elias JS; Costentin C; Nocera DG
    ACS Cent Sci; 2019 Jun; 5(6):1097-1105. PubMed ID: 31263769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO
    Wang X; Chen Z; Zhao X; Yao T; Chen W; You R; Zhao C; Wu G; Wang J; Huang W; Yang J; Hong X; Wei S; Wu Y; Li Y
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1944-1948. PubMed ID: 29266615
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct Electrochemical Synthesis of Acetamide from CO
    Wang J; Li S; Liu Q; Zhao K; Yang Y; Wang X
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53436-53445. PubMed ID: 37934920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dinuclear Rhenium Complex with a Proton Responsive Ligand as a Redox Catalyst for the Electrochemical CO
    Wilting A; Stolper T; Mata RA; Siewert I
    Inorg Chem; 2017 Apr; 56(7):4176-4185. PubMed ID: 28318245
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electroreduction of CO
    Dey S; Todorova TK; Fontecave M; Mougel V
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15726-15733. PubMed ID: 32673413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activating the Fe(I) State of Iron Porphyrinoid with Second-Sphere Proton Transfer Residues for Selective Reduction of CO
    Amanullah S; Saha P; Dey A
    J Am Chem Soc; 2021 Sep; 143(34):13579-13592. PubMed ID: 34410125
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes.
    Mejia-Rodriguez R; Chong D; Reibenspies JH; Soriaga MP; Darensbourg MY
    J Am Chem Soc; 2004 Sep; 126(38):12004-14. PubMed ID: 15382935
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acid-Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction.
    Li P; Lu X; Wu Z; Wu Y; Malpass-Evans R; McKeown NB; Sun X; Wang H
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10918-10923. PubMed ID: 32212372
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alternating Metal-Ligand Coordination Improves Electrocatalytic CO
    Agarwala H; Chen X; Lyonnet JR; Johnson BA; Ahlquist M; Ott S
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202218728. PubMed ID: 36800485
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
    Tatin A; Comminges C; Kokoh B; Costentin C; Robert M; Savéant JM
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5526-9. PubMed ID: 27140621
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quick and Easy Method to Dramatically Improve the Electrochemical CO
    Kosugi K; Kondo M; Masaoka S
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):22070-22074. PubMed ID: 34347328
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction.
    Cao Z; Kim D; Hong D; Yu Y; Xu J; Lin S; Wen X; Nichols EM; Jeong K; Reimer JA; Yang P; Chang CJ
    J Am Chem Soc; 2016 Jul; 138(26):8120-5. PubMed ID: 27322487
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO
    Tao H; Sun X; Back S; Han Z; Zhu Q; Robertson AW; Ma T; Fan Q; Han B; Jung Y; Sun Z
    Chem Sci; 2018 Jan; 9(2):483-487. PubMed ID: 29629117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.