BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32657546)

  • 1. Programmable CRISPR-Cas transcriptional activation in bacteria.
    Ho HI; Fang JR; Cheung J; Wang HH
    Mol Syst Biol; 2020 Jul; 16(7):e9427. PubMed ID: 32657546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria.
    Liu Y; Wan X; Wang B
    Nat Commun; 2019 Aug; 10(1):3693. PubMed ID: 31451697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements.
    Fontana J; Dong C; Kiattisewee C; Chavali VP; Tickman BI; Carothers JM; Zalatan JG
    Nat Commun; 2020 Apr; 11(1):1618. PubMed ID: 32238808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.
    Cress BF; Toparlak ÖD; Guleria S; Lebovich M; Stieglitz JT; Englaender JA; Jones JA; Linhardt RJ; Koffas MA
    ACS Synth Biol; 2015 Sep; 4(9):987-1000. PubMed ID: 25822415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range.
    Villegas Kcam MC; Tsong AJ; Chappell J
    Nucleic Acids Res; 2021 May; 49(8):4793-4802. PubMed ID: 33823546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants.
    Ding X; Yu L; Chen L; Li Y; Zhang J; Sheng H; Ren Z; Li Y; Yu X; Jin S; Cao J
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9.
    Cui L; Vigouroux A; Rousset F; Varet H; Khanna V; Bikard D
    Nat Commun; 2018 May; 9(1):1912. PubMed ID: 29765036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthogonal tuning of gene expression noise using CRISPR-Cas.
    Wu F; Shim J; Gong T; Tan C
    Nucleic Acids Res; 2020 Jul; 48(13):e76. PubMed ID: 32479612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering.
    Liu Q; Zhang H; Huang X
    FEBS J; 2020 Feb; 287(4):626-644. PubMed ID: 31730297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic Gene Circuits Combining CRISPR Interference and CRISPR Activation in
    Barbier I; Kusumawardhani H; Chauhan L; Harlapur PV; Jolly MK; Schaerli Y
    ACS Synth Biol; 2023 Oct; 12(10):3064-3071. PubMed ID: 37813387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling and enhancing CRISPR systems.
    Shivram H; Cress BF; Knott GJ; Doudna JA
    Nat Chem Biol; 2021 Jan; 17(1):10-19. PubMed ID: 33328654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short communication: An inducible CRISPR/dCas9 gene repression system in Lactococcus lactis.
    Xiong ZQ; Wei YY; Kong LH; Song X; Yi HX; Ai LZ
    J Dairy Sci; 2020 Jan; 103(1):161-165. PubMed ID: 31733872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable Transcriptional Modulation with a Structured RNA-Mediated CRISPR-dCas9 Complex.
    He M; Zhou X; Li Z; Yin X; Han W; Zhou J; Sun X; Liu X; Yao D; Liang H
    J Am Chem Soc; 2022 Jul; 144(28):12690-12697. PubMed ID: 35792375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the Distinct Properties of a Bacterial Type I-E CRISPR Activation System.
    Villegas Kcam MC; Tsong AJ; Chappell J
    ACS Synth Biol; 2022 Feb; 11(2):1000-1003. PubMed ID: 35077145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CRISPR Interference Platform for Efficient Genetic Repression in
    Wensing L; Sharma J; Uthayakumar D; Proteau Y; Chavez A; Shapiro RS
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer.
    Liu C; Wang N; Luo R; Li L; Yang W; Wang X; Shen M; Wu Q; Gong C
    Theranostics; 2021; 11(20):9833-9846. PubMed ID: 34815789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems.
    Davidson AR; Lu WT; Stanley SY; Wang J; Mejdani M; Trost CN; Hicks BT; Lee J; Sontheimer EJ
    Annu Rev Biochem; 2020 Jun; 89():309-332. PubMed ID: 32186918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex and optimization of dCas9-TV-mediated gene activation in plants.
    Xiong X; Liang J; Li Z; Gong BQ; Li JF
    J Integr Plant Biol; 2021 Apr; 63(4):634-645. PubMed ID: 33058471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons.
    Klompe SE; Jaber N; Beh LY; Mohabir JT; Bernheim A; Sternberg SH
    Mol Cell; 2022 Feb; 82(3):616-628.e5. PubMed ID: 35051352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.