These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32658460)

  • 21. Unleashing the Power and Energy of LiFePO
    Zhu YG; Du Y; Jia C; Zhou M; Fan L; Wang X; Wang Q
    J Am Chem Soc; 2017 May; 139(18):6286-6289. PubMed ID: 28436226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-Dimensional Reconstruction and Analysis of All-Solid Li-Ion Battery Electrode Using Synchrotron Transmission X-ray Microscopy Tomography.
    Li T; Kang H; Zhou X; Lim C; Yan B; De Andrade V; De Carlo F; Zhu L
    ACS Appl Mater Interfaces; 2018 May; 10(20):16927-16931. PubMed ID: 29733566
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Mirolo M; Leanza D; Höltschi L; Jordy C; Pelé V; Novák P; El Kazzi M; Vaz CAF
    Anal Chem; 2020 Feb; 92(4):3023-3031. PubMed ID: 31961659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Composite Cathode Architecture with Improved Oxidation Kinetics in Polymer-Based Li-O
    Mushtaq M; Guo X; Wang Y; Hao L; Lin Z; Yu H
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30259-30267. PubMed ID: 32525303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pore-Scale Simulations of Porous Electrodes of Li-O
    Wang F; Li X
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26222-26232. PubMed ID: 30009605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.
    Zhang X; van Hulzen M; Singh DP; Brownrigg A; Wright JP; van Dijk NH; Wagemaker M
    Nat Commun; 2015 Sep; 6():8333. PubMed ID: 26395323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes.
    Hauffman G; Maguin Q; Bourgeois JP; Vlad A; Gohy JF
    Macromol Rapid Commun; 2014 Jan; 35(2):228-233. PubMed ID: 24127365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying Reaction and Rate Heterogeneity in Battery Electrodes in 3D through Operando X-ray Diffraction Computed Tomography.
    Liu H; Kazemiabnavi S; Grenier A; Vaughan G; Di Michiel M; Polzin BJ; Thornton K; Chapman KW; Chupas PJ
    ACS Appl Mater Interfaces; 2019 May; 11(20):18386-18394. PubMed ID: 31021598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A reversible and higher-rate Li-O2 battery.
    Peng Z; Freunberger SA; Chen Y; Bruce PG
    Science; 2012 Aug; 337(6094):563-6. PubMed ID: 22821984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes.
    Smith GD; Borodin O; Russo SP; Rees RJ; Hollenkamp AF
    Phys Chem Chem Phys; 2009 Nov; 11(42):9884-97. PubMed ID: 19851568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries.
    Hess M; Sasaki T; Villevieille C; Novák P
    Nat Commun; 2015 Sep; 6():8169. PubMed ID: 26345306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.
    Zheng JS; Zhang L; Shellikeri A; Cao W; Wu Q; Zheng JP
    Sci Rep; 2017 Feb; 7():41910. PubMed ID: 28169329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system.
    Maibach J; Xu C; Eriksson SK; Åhlund J; Gustafsson T; Siegbahn H; Rensmo H; Edström K; Hahlin M
    Rev Sci Instrum; 2015 Apr; 86(4):044101. PubMed ID: 25933870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revealing the Rate-Limiting Li-Ion Diffusion Pathway in Ultrathick Electrodes for Li-Ion Batteries.
    Gao H; Wu Q; Hu Y; Zheng JP; Amine K; Chen Z
    J Phys Chem Lett; 2018 Sep; 9(17):5100-5104. PubMed ID: 30130117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Are Operando Measurements of Rechargeable Batteries Always Reliable? An Example of Beam Effect with a Mg Battery.
    Blondeau L; Surblé S; Foy E; Khodja H; Belin S; Gauthier M
    Anal Chem; 2022 Jul; 94(27):9683-9689. PubMed ID: 35775715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An electrochemical cell with sapphire windows for operando synchrotron X-ray powder diffraction and spectroscopy studies of high-power and high-voltage electrodes for metal-ion batteries.
    Drozhzhin OA; Tereshchenko IV; Emerich H; Antipov EV; Abakumov AM; Chernyshov D
    J Synchrotron Radiat; 2018 Mar; 25(Pt 2):468-472. PubMed ID: 29488926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and Li
    Boyer MJ; Vilčiauskas L; Hwang GS
    Phys Chem Chem Phys; 2016 Oct; 18(40):27868-27876. PubMed ID: 27711674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Energy Density Li metal Dual-Ion Battery with a Lithium Nitrate-Modified Carbonate-Based Electrolyte.
    Wu LN; Peng J; Sun YK; Han FM; Wen YF; Shi CG; Fan JJ; Huang L; Li JT; Sun SG
    ACS Appl Mater Interfaces; 2019 May; 11(20):18504-18510. PubMed ID: 31033271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Performance Cells Containing Lithium Metal Anodes, LiNi
    Salitra G; Markevich E; Afri M; Talyosef Y; Hartmann P; Kulisch J; Sun YK; Aurbach D
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19773-19782. PubMed ID: 29787244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.