These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 32658689)
1. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Kim JH; Kim N; Moon H; Lee S; Jeong SY; Diaz-Pulido G; Edwards MS; Kang JH; Kang EJ; Oh HJ; Hwang JD; Kim IN Mar Pollut Bull; 2020 Aug; 157():111324. PubMed ID: 32658689 [TBL] [Abstract][Full Text] [Related]
2. Consequences of Warming and Acidification for the Temperate Articulated Coralline Alga, Calliarthron Tuberculosum (Florideophyceae, Rhodophyta). Donham EM; Hamilton SL; Aiello I; Price NN; Smith JE J Phycol; 2022 Aug; 58(4):517-529. PubMed ID: 35657106 [TBL] [Abstract][Full Text] [Related]
3. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1). Diaz-Pulido G; Anthony KR; Kline DI; Dove S; Hoegh-Guldberg O J Phycol; 2012 Feb; 48(1):32-9. PubMed ID: 27009647 [TBL] [Abstract][Full Text] [Related]
4. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Bergstrom E; Ordoñez A; Ho M; Hurd C; Fry B; Diaz-Pulido G Mar Environ Res; 2020 Oct; 161():105107. PubMed ID: 32890983 [TBL] [Abstract][Full Text] [Related]
5. Impact of ocean acidification and warming on the productivity of a rock pool community. Legrand E; Riera P; Bohner O; Coudret J; Schlicklin F; Derrien M; Martin S Mar Environ Res; 2018 May; 136():78-88. PubMed ID: 29472033 [TBL] [Abstract][Full Text] [Related]
6. Major loss of coralline algal diversity in response to ocean acidification. Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846 [TBL] [Abstract][Full Text] [Related]
7. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
8. Coralline algae elevate pH at the site of calcification under ocean acidification. Cornwall CE; Comeau S; McCulloch MT Glob Chang Biol; 2017 Oct; 23(10):4245-4256. PubMed ID: 28370806 [TBL] [Abstract][Full Text] [Related]
9. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae. Scherner F; Pereira CM; Duarte G; Horta PA; E Castro CB; Barufi JB; Pereira SM PLoS One; 2016; 11(5):e0154844. PubMed ID: 27158820 [TBL] [Abstract][Full Text] [Related]
10. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
11. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming. Kang EJ; Han AR; Kim JH; Kim IN; Lee S; Min JO; Nam BR; Choi YJ; Edwards MS; Diaz-Pulido G; Kim C Sci Total Environ; 2021 May; 769():144443. PubMed ID: 33493906 [TBL] [Abstract][Full Text] [Related]
12. Effects of ocean acidification on population dynamics and community structure of crustose coralline algae. Ordoñez A; Doropoulos C; Diaz-Pulido G Biol Bull; 2014 Jun; 226(3):255-68. PubMed ID: 25070869 [TBL] [Abstract][Full Text] [Related]
14. Boosted nutritional quality of food by CO Leung JYS; Nagelkerken I; Russell BD; Ferreira CM; Connell SD Sci Total Environ; 2018 Oct; 639():360-366. PubMed ID: 29791888 [TBL] [Abstract][Full Text] [Related]
15. Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing. Barner AK; Chan F; Hettinger A; Hacker SD; Marshall K; Menge BA Glob Chang Biol; 2018 Oct; 24(10):4464-4477. PubMed ID: 30047188 [TBL] [Abstract][Full Text] [Related]
16. Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Diaz-Pulido G; Nash MC; Anthony KR; Bender D; Opdyke BN; Reyes-Nivia C; Troitzsch U Nat Commun; 2014; 5():3310. PubMed ID: 24518160 [TBL] [Abstract][Full Text] [Related]
17. Rapid multi-generational acclimation of coralline algal reproductive structures to ocean acidification. Moore B; Comeau S; Bekaert M; Cossais A; Purdy A; Larcombe E; Puerzer F; McCulloch MT; Cornwall CE Proc Biol Sci; 2021 May; 288(1950):20210130. PubMed ID: 33975470 [TBL] [Abstract][Full Text] [Related]
18. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification. Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182 [TBL] [Abstract][Full Text] [Related]
19. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Vásquez-Elizondo RM; Enríquez S Sci Rep; 2016 Jan; 6():19030. PubMed ID: 26740396 [TBL] [Abstract][Full Text] [Related]
20. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Zhong J; Guo Y; Liang Z; Huang Q; Lu H; Pan J; Li P; Jin P; Xia J Sci Total Environ; 2021 Jun; 771():145167. PubMed ID: 33736151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]