These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
439 related articles for article (PubMed ID: 32658792)
41. SRV-GAN: A generative adversarial network for segmenting retinal vessels. Yue C; Ye M; Wang P; Huang D; Lu X Math Biosci Eng; 2022 Jul; 19(10):9948-9965. PubMed ID: 36031977 [TBL] [Abstract][Full Text] [Related]
42. Dynamic pixel-wise weighting-based fully convolutional neural networks for left ventricle segmentation in short-axis MRI. Wang Z; Xie L; Qi J Magn Reson Imaging; 2020 Feb; 66():131-140. PubMed ID: 31465788 [TBL] [Abstract][Full Text] [Related]
43. DualMMP-GAN: Dual-scale multi-modality perceptual generative adversarial network for medical image segmentation. Zhu L; He Q; Huang Y; Zhang Z; Zeng J; Lu L; Kong W; Zhou F Comput Biol Med; 2022 May; 144():105387. PubMed ID: 35305502 [TBL] [Abstract][Full Text] [Related]
44. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression. Tan LK; McLaughlin RA; Lim E; Abdul Aziz YF; Liew YM J Magn Reson Imaging; 2018 Jul; 48(1):140-152. PubMed ID: 29316024 [TBL] [Abstract][Full Text] [Related]
45. Generative multi-adversarial network for striking the right balance in abdominal image segmentation. Rezaei M; Näppi JJ; Lippert C; Meinel C; Yoshida H Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1847-1858. PubMed ID: 32897490 [TBL] [Abstract][Full Text] [Related]
46. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks. Subramaniam P; Kossen T; Ritter K; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D; Madai VI Med Image Anal; 2022 May; 78():102396. PubMed ID: 35231850 [TBL] [Abstract][Full Text] [Related]
47. Simultaneous extraction of endocardial and epicardial contours of the left ventricle by distance regularized level sets. Feng C; Zhang S; Zhao D; Li C Med Phys; 2016 Jun; 43(6):2741-2755. PubMed ID: 27277021 [TBL] [Abstract][Full Text] [Related]
48. MRI image synthesis with dual discriminator adversarial learning and difficulty-aware attention mechanism for hippocampal subfields segmentation. Ma B; Zhao Y; Yang Y; Zhang X; Dong X; Zeng D; Ma S; Li S Comput Med Imaging Graph; 2020 Dec; 86():101800. PubMed ID: 33130416 [TBL] [Abstract][Full Text] [Related]
49. Ultrasonic breast tumor extraction based on adversarial mechanism and active contour. Wang J; Chen G; Chen S; Joseph Raj AN; Zhuang Z; Xie L; Ma S Comput Methods Programs Biomed; 2022 Oct; 225():107052. PubMed ID: 35985149 [TBL] [Abstract][Full Text] [Related]
50. Cardiac MRI segmentation with focal loss constrained deep residual networks. Li C; Chen M; Zhang J; Liu H Phys Med Biol; 2021 Jul; 66(13):. PubMed ID: 34134101 [TBL] [Abstract][Full Text] [Related]
51. Automatic segmentation of prostate magnetic resonance imaging using generative adversarial networks. Wang W; Wang G; Wu X; Ding X; Cao X; Wang L; Zhang J; Wang P Clin Imaging; 2021 Feb; 70():1-9. PubMed ID: 33120283 [TBL] [Abstract][Full Text] [Related]
52. Segmentation of Cardiac Structures via Successive Subspace Learning with Saab Transform from Cine MRI. Liu X; Xing F; Gaggin HK; Wang W; Kuo CJ; El Fakhri G; Woo J Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3535-3538. PubMed ID: 34892002 [TBL] [Abstract][Full Text] [Related]
53. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients. Tie X; Lam SK; Zhang Y; Lee KH; Au KH; Cai J Med Phys; 2020 Apr; 47(4):1750-1762. PubMed ID: 32012292 [TBL] [Abstract][Full Text] [Related]
54. Fully automatic segmentation of right and left ventricle on short-axis cardiac MRI images. Budai A; Suhai FI; Csorba K; Toth A; Szabo L; Vago H; Merkely B Comput Med Imaging Graph; 2020 Oct; 85():101786. PubMed ID: 32866695 [TBL] [Abstract][Full Text] [Related]
55. A multiple-channel and atrous convolution network for ultrasound image segmentation. Zhang L; Zhang J; Li Z; Song Y Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105 [TBL] [Abstract][Full Text] [Related]
56. Light-Weight Localization and Scale-Independent Multi-gate UNET Segmentation of Left and Right Ventricles in MRI Images. Abdelrauof D; Essam M; Elattar M Cardiovasc Eng Technol; 2022 Jun; 13(3):393-406. PubMed ID: 34773242 [TBL] [Abstract][Full Text] [Related]
57. Towards annotation-efficient segmentation via image-to-image translation. Vorontsov E; Molchanov P; Gazda M; Beckham C; Kautz J; Kadoury S Med Image Anal; 2022 Nov; 82():102624. PubMed ID: 36208571 [TBL] [Abstract][Full Text] [Related]
58. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768 [TBL] [Abstract][Full Text] [Related]
59. Pyramid feature adaptation for semi-supervised cardiac bi-ventricle segmentation. Yu C; Yan Y; Zhao S; Zhang Y Comput Med Imaging Graph; 2020 Apr; 81():101697. PubMed ID: 32086113 [TBL] [Abstract][Full Text] [Related]
60. Can Generative Adversarial Networks help to overcome the limited data problem in segmentation? Heilemann G; Matthewman M; Kuess P; Goldner G; Widder J; Georg D; Zimmermann L Z Med Phys; 2022 Aug; 32(3):361-368. PubMed ID: 34930685 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]