These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 32658995)

  • 1. Neural cells and their progenitors in regenerating zebrafish spinal cord.
    Hui SP; Nag TC; Ghosh S
    Int J Dev Biol; 2020; 64(4-5-6):353-366. PubMed ID: 32658995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.
    Hui SP; Nag TC; Ghosh S
    PLoS One; 2015; 10(12):e0143595. PubMed ID: 26630262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial glial progenitors repair the zebrafish spinal cord following transection.
    Briona LK; Dorsky RI
    Exp Neurol; 2014 Jun; 256():81-92. PubMed ID: 24721238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury.
    Briona LK; Poulain FE; Mosimann C; Dorsky RI
    Dev Biol; 2015 Jul; 403(1):15-21. PubMed ID: 25888075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular response after crush injury in adult zebrafish spinal cord.
    Hui SP; Dutta A; Ghosh S
    Dev Dyn; 2010 Nov; 239(11):2962-79. PubMed ID: 20931657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized EMT reprograms glial progenitors to promote spinal cord repair.
    Klatt Shaw D; Saraswathy VM; Zhou L; McAdow AR; Burris B; Butka E; Morris SA; Dietmann S; Mokalled MH
    Dev Cell; 2021 Mar; 56(5):613-626.e7. PubMed ID: 33609461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish.
    Goldshmit Y; Tang JKKY; Siegel AL; Nguyen PD; Kaslin J; Currie PD; Jusuf PR
    Neural Dev; 2018 Nov; 13(1):24. PubMed ID: 30447699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome wide expression profiling during spinal cord regeneration identifies comprehensive cellular responses in zebrafish.
    Hui SP; Sengupta D; Lee SG; Sen T; Kundu S; Mathavan S; Ghosh S
    PLoS One; 2014; 9(1):e84212. PubMed ID: 24465396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injury-induced Cavl-expressing cells at lesion rostral side play major roles in spinal cord regeneration.
    Zeng CW; Kamei Y; Shigenobu S; Sheu JC; Tsai HJ
    Open Biol; 2021 Feb; 11(2):200304. PubMed ID: 33622104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Neuronal Regeneration of Adult Zebrafish After Spinal Cord Injury Is Enhanced by Transplanting Optimized Number of Neural Progenitor Cells.
    Zeng CW; Sheu JC; Tsai HJ
    Cell Transplant; 2020; 29():963689720903679. PubMed ID: 32233781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish.
    Yu Y; Schachner M
    Eur J Neurosci; 2013 Jul; 38(2):2280-9. PubMed ID: 23607754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regeneration of Zebrafish CNS: Adult Neurogenesis.
    Ghosh S; Hui SP
    Neural Plast; 2016; 2016():5815439. PubMed ID: 27382491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oligodendrocyte progenitor cells (re-)myelinate the regenerating zebrafish spinal cord.
    Tsata V; Kroehne V; Wehner D; Rost F; Lange C; Hoppe C; Kurth T; Reinhardt S; Petzold A; Dahl A; Loeffler M; Reimer MM; Brand M
    Development; 2020 Dec; 147(24):. PubMed ID: 33158923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progenitor-derived glia are required for spinal cord regeneration in zebrafish.
    Zhou L; McAdow AR; Yamada H; Burris B; Klatt Shaw D; Oonk K; Poss KD; Mokalled MH
    Development; 2023 May; 150(10):. PubMed ID: 37213080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrophage-Neuroglia Interactions in Promoting Neuronal Regeneration in Zebrafish.
    Zeng CW
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery.
    Chen HY; Huang YC; Yeh TH; Chang CW; Shen YJ; Chen YC; Sun MQ; Cheng YC
    Stem Cells Dev; 2024 Oct; 33(19-20):540-550. PubMed ID: 39001828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury.
    Ju P; Zhang S; Yeap Y; Feng Z
    Glia; 2012 Nov; 60(11):1801-14. PubMed ID: 22865681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spinal ependymal zone as a source of endogenous repair cells across vertebrates.
    Becker CG; Becker T; Hugnot JP
    Prog Neurobiol; 2018 Nov; 170():67-80. PubMed ID: 29649499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine- and glycine-rich protein 1a is involved in spinal cord regeneration in adult zebrafish.
    Ma L; Yu YM; Guo Y; Hart RP; Schachner M
    Eur J Neurosci; 2012 Feb; 35(3):353-65. PubMed ID: 22288476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of gliosis in a teleost model of spinal cord regeneration.
    Vitalo AG; Sîrbulescu RF; Ilieş I; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jun; 202(6):445-56. PubMed ID: 27225982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.