These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32659008)

  • 1. Caulonema differentiation in Funaria protonema.
    Johri MM
    Int J Dev Biol; 2020; 64(1-2-3):21-28. PubMed ID: 32659008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1and PpRSL2 in Physcomitrella patens.
    Jang G; Dolan L
    New Phytol; 2011 Oct; 192(2):319-27. PubMed ID: 21707622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RSL genes are sufficient for rhizoid system development in early diverging land plants.
    Jang G; Yi K; Pires ND; Menand B; Dolan L
    Development; 2011 Jun; 138(11):2273-81. PubMed ID: 21558375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants.
    Tam TH; Catarino B; Dolan L
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):E3959-68. PubMed ID: 26150509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of activated calmodulin in the chloronema tip cells of the moss Funaria hygrometrica.
    Bhatla SC; Haschke HP; Hartmann E
    J Plant Physiol; 2003 May; 160(5):469-74. PubMed ID: 12806774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin-binding proteins without KDEL sequence in the moss Funaria hygrometrica.
    Panigrahi KC; Panigrahy M; Vervliet-Scheebaum M; Lang D; Reski R; Johri MM
    Plant Cell Rep; 2009 Nov; 28(11):1747-58. PubMed ID: 19798504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory Mechanism of ABA and ABI3 on Vegetative Development in the Moss
    Zhao M; Li Q; Chen Z; Lv Q; Bao F; Wang X; He Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin regulation of caulonema formation in moss protonema.
    Johri MM; Desai S
    Nat New Biol; 1973 Oct; 245(146):223-4. PubMed ID: 4518144
    [No Abstract]   [Full Text] [Related]  

  • 9. Physcomitrella patens: a model for tip cell growth and differentiation.
    Vidali L; Bezanilla M
    Curr Opin Plant Biol; 2012 Dec; 15(6):625-31. PubMed ID: 23022392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens.
    Imaizumi T; Kadota A; Hasebe M; Wada M
    Plant Cell; 2002 Feb; 14(2):373-86. PubMed ID: 11884681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA534a control of BLADE-ON-PETIOLE 1 and 2 mediates juvenile-to-adult gametophyte transition in Physcomitrella patens.
    Saleh O; Issman N; Seumel GI; Stav R; Samach A; Reski R; Frank W; Arazi T
    Plant J; 2011 Feb; 65(4):661-74. PubMed ID: 21235646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis.
    Ludwig-Müller J; Jülke S; Bierfreund NM; Decker EL; Reski R
    New Phytol; 2009 Jan; 181(2):323-338. PubMed ID: 19032442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diluted seawater affects phytohormone receptors and maintains the protonema stage in Physcomitrella patens.
    Zheng Z; Gao S; Huan L; Wang GC
    Plant J; 2018 Jan; 93(1):119-130. PubMed ID: 29124815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assays of Protonemal Growth Responses in Physcomitrella patens Under Blue- and Red-Light Stimuli.
    Miyazaki S; Nakajima M; Kawaide H
    Methods Mol Biol; 2019; 1924():35-43. PubMed ID: 30694465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strigolactones inhibit caulonema elongation and cell division in the moss Physcomitrella patens.
    Hoffmann B; Proust H; Belcram K; Labrune C; Boyer FD; Rameau C; Bonhomme S
    PLoS One; 2014; 9(6):e99206. PubMed ID: 24911649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway.
    Prigge MJ; Lavy M; Ashton NW; Estelle M
    Curr Biol; 2010 Nov; 20(21):1907-12. PubMed ID: 20951049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fundamental developmental transition in Physcomitrium patens is regulated by evolutionarily conserved mechanisms.
    Jaeger R; Moody LA
    Evol Dev; 2021 May; 23(3):123-136. PubMed ID: 33822471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of PpDof1 transcriptional repressor in the nutrient condition-dependent growth control of protonemal filaments in Physcomitrella patens.
    Sugiyama T; Ishida T; Tabei N; Shigyo M; Konishi M; Yoneyama T; Yanagisawa S
    J Exp Bot; 2012 May; 63(8):3185-97. PubMed ID: 22345635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BLADE-ON-PETIOLE genes are not involved in the transition from protonema to gametophore in the moss Physcomitrella patens.
    Hata Y; Naramoto S; Kyozuka J
    J Plant Res; 2019 Sep; 132(5):617-627. PubMed ID: 31432295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knockout of GH3 genes in the moss Physcomitrella patens leads to increased IAA levels at elevated temperature and in darkness.
    Mittag J; Gabrielyan A; Ludwig-Müller J
    Plant Physiol Biochem; 2015 Dec; 97():339-49. PubMed ID: 26520677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.